Castelli Research Group

Department of Energy Convesion and Storage
Technical University of Denmark

Research Interests and Vision

Our research is interdisciplinary at the intersection of computational physics and chemistry, materials science, and computer science. Our focus is to understand materials properties using atomistic, mainly in the framework of Density Functional Theory (DFT), and multiscale models and, by inverse engineering, to accelerate the discovery of novel, more efficient materials for a sustainable future. Our research vision is to automate and accelerate the design of novel materials by developing high-throughput and workflows methodologies based on multiscale models bridged by Artificial Intelligence tools. We often collaborate with experimental colleagues to elucidate physico-chemical properties at the atomic and multiscale levels.

Nanostructured Si-anodes for Li-ion Batteries (LIBs)

Using AI models and multiscale models (DFT and Finite Element Models), we design nanostructured Si-anodes which can solve some of the most critical challenges of the use of Si in LIBs.

Autonomous Workflows for Battery Materials and Interfaces

We implement workflows to discover new materials with controlled interface properties (Solid Electrolyte Interphase) for LIBs.

High Entropy Oxides

We investigate the vast chemical space of high entropy oxides as new electrodes and electrolytes for protonic conducting fuel cells.

Electronic and Low-temperature Ionic Conductors

We study electronic conductivity and ionic transport mechanism in oxides aiming at designing new low-temperature conductors for a variety of applications.

Low Dimensionality Materials

We design novel 1D and 2D materials with properties of interesting for nano-electronics and optical applications.

Hybrid Perovskites

We investigate structural, optical, and self-healing properties of 3D and 2D hybrid perovskites.

Publications

Orcid: 0000-0001-5880-5045; Scopus ID: 25821783000

  • All
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008

  • Cover Pages
  • Patents
  • Book Chapters
  • Thesis
  • Other
98. Exploring the Electronic Properties and Oxygen Vacancy Formation in SrTiO3 under Strain, Z. Lan, T. Vegge, and I. E. Castelli,Computational Materials Science 231, 112623 (2024).
97. How Does Local Strain Affect Stokes Shifts in Halide Double Perovskite Nanocrystals?, S. Shaek, S. Khalfin, E. H. Massasa, A. Lang, S. Levy, L. T. J. Kortstee, B. Shamaev, S. Dror, R. Lifer, R. Shechter, Y. Kauffmann, R. Strassberg, I. Polishchuk, A. B. Wong, B. Pokroy, I. E. Castelli, and Y. Bekenstein, Chem. Mater. 35, 9064 (2023).
96. Insights into the Growth of Ternary WSSe Nanotubes in an Atmospheric CVD Reactor, R. Rosentsveig, M. B. Sreedhara, S. S. Sinha, I. Kaplan-Ashiri, O. Brontvein, Y. Feldman, I. Pinkas, K. Zheng, I. E. Castelli, and R. Tenne, Inorg. Chem. 62, 18267 (2023).
95. Tailoring High-Entropy Oxides as Emerging Radiative Materials for Daytime Passive Cooling, C. Borghesi, C. Fabiani, R. Bondi, L. Latterini, I. E. Castelli, A. L. Pisello, and G. Giorgi, Chem. Mater. 35, 10384 (2023).
94. The NordBatt Conferences: The Journey so Far and the Future Ahead, K. Edström, F. Vullum-Bruer, U. Lassi, I. E. Castelli, and P. Johansson, Batteries & Supercaps 2023, e202300436 (2023).
93. Reinforcement Learning-based Design of Shape-changing Metamaterials, S. B. Oliva, F. T. Bölle, X. Xia, and I. E. Castelli, J. Mater. Chem. A 11, 21036 (2023).
92. Brokering Between Tenants for an International Materials Acceleration Platform, M. Vogler, J. Busk, H. Hajiyani, P. B. Jørgensen, N. Safaei, I. E. Castelli, F. F. Ramirez, J. Carlsson, G. Pizzi, S. Clark, F. Hanke, A. Bhowmik, H. S. Stein, Matter 6, 2647 (2023).
91. Artificial Intelligence and Machine Learning in Energy Storage and Conversion, Z. Wei Seh, K. Jiao, and I. E. Castelli, Energy Adv. 2, 1237 (2023).
90. Structural and Electronic Properties of Double Wall MoSTe Nanotubes, Z. Lan, T. I. M. Kapunan, T. Vegge, and I. E. Castelli, Phys. Chem. Chem. Phys. 25, 22155 (2023).
89. Role of Catalytic Conversions of Ethylene Carbonate, Water, and HF in Forming the Solid-Electrolyte Interphase of Li-Ion Batteries, M. Martins, D. Haering, J. G. Connell, H. Wan, K. L. Svane, B. Genorio, P. F. B. D. Martins, P. P. Lopes, B. Gould, F. Maglia, R. Jung, V. Stamenkovic, I. E. Castelli, N. M. Markovic, J. Rossmeisl, and D. Strmcnik, ACS Catal. 13, 9289 (2023).
88. Rapid, One-pot, Non-toxic and Scalable Synthesis of Boron Nitride Nano-onions via Lamp Ablation, H. Zhang, J. He, W. Zhang, I. E. Castelli, M. Saunders, J. M. Gordon, and H. T. Chua, Materials Today 67, 13 (2023).
87. Accelerated Workflow for Antiperovskite-based Solid State Electrolytes, B. H. Sjølin, P. B. Jørgensen, A. Fedrigucci, T. Vegge, A. Bhowmik, I. E. Castelli, Batteries & Supercaps 2023, e202300041 (2023).
86. Transformations of 2D to 3D Double-Perovskite Nanoplates of Cs2AgBiBr6 Composition, S. Dror, S. Khalfin, N. Veber, A. Lang, Y. Kauffmann, M. K. Khristosov, R. Shechter, B. Pokroy, I. E. Castelli, and Y. Bekenstein, Chem. Mater. 35, 1363 (2023).
85. Study of Optoelectronic Features in Polar and Nonpolar Polymorphs of the Oxynitride Tin-Based Semiconductor InSnO2N, M. Palummo, M. R. Fiorentin, K. Yamashita, I. E. Castelli, and G. Giorgi, J. Phys. Chem. Lett. 14, 1548 (2023).
84. Synthesis of the Elusive Doublewall Nanotubes and Nanocones(Horns) of MoS2 via Focused Solar Ablation, T. Barbe, R. Rosentsveig, O. Brontvein, M. B. Sreedhara, K. Zheng, F. Bataille, A. Vossier, G. Flamant, I. E. Castelli, J. M. Gordon, and R. Tenne, Adv. Mater. Interfaces 2023, 2201930 (2023).
83. Bridging the Catalyst Reactivity Gap between Au and Cu for the Reverse Water-Gas Shift Reaction, D. Yan, H. H. Kristoffersen, I. E. Castelli, and J. Rossmeisl, J. Phys. Chem. C 126, 19756 (2022).
82. Accelerating the Adoption of Research Data Management Strategies, J. Medina, A. W. Ziaullah, H. Park, I. E. Castelli, A. Shaon, H. Bensmail, and F. El-Mellouh, Matter 5, 3614 (2022).
81. Atomically Engineered Interfaces Yield Extraordinary Electrostriction, H. Zhang, N. Pryds, D.-S. Park, N. Gauquelin, S. Santucci, D. V. Christensen, D. Jannis, D. Chezganov, D. A. Rata, A. R. Insinga, I. E. Castelli, J. Verbeeck, I. Lubomirsky, P. Muralt, D. Damjanovic, and V. Esposito, Nature 609, 695(2022).
80. Rational Catalyst Design for Higher Propene Partial Electro-oxidation Activity by Alloying Pd with Au, L. Silvioli, A. Winiwarter, S. B. Scott, I. E. Castelli, P. G. Moses, I. Chorkendorff, B. Seger, and J. Rossmeisl, in printing J. Phys. Chem. C , (2022).
79. Dynamic Strain and Switchable Polarization: a Pathway to Enhance the Oxygen Evolution Reaction on InSnO2N, C. Spezzati, Z. Lan, and I. E. Castelli, Journal of Catalysis 413, 720 (2022).
78. Nanotubes from Ternary WS2(1-x)Se2x Alloys: Stoichiometry Modulated Tunable Optical Properties, M. B. Sreedhara, Y. Miroshnikov, K. Zheng, L. Houben, S. Hettler, R. Arenal, I. Pinkas, S. Sinha, I. E. Castelli, and R. Tenne, J. Am. Chem. Soc. 144, 10530 (2022).
77. Observation of Biradical Spin Coupling through Hydrogen Bonds, Y. He, N. Li, I. E. Castelli, R. Li, Y. Zhang, X. Zhang, C. Li, B. Wang, S. Gao, L. Peng, S. Hou, Z. Shen, J.-T. Lü, K. Wu, P. Hedegård, and Y. Wang, Phys. Rev. Lett. 128, 236401 (2022).
76. Editorial to the Special Issue: How to Reinvent the Ways to Invent the Batteries of the Future - the BATTERY 2030+ Large-Scale Research Initiative Roadmap , K. Edström, E. Ayerbe, I. E. Castelli, I. Cekic-Laskovic, R. Dominko, A. Grimaud, T. Vegge, and W. Wentzel, Adv. Energy Mater 2022, 2200644 (2022).
75. Optimizing the Quasi-equilibrium State of Hot Carriers in All-inorganic Lead Halide Perovskite Nanocrystals Through Mn Doping: Fundamental Dynamics and Device Perspectives, J. Meng, Z. Lan, W. Lin, M. Liang, X. Zou, Q. Zhao, H. Geng, I. E. Castelli, S. E. Canton, T. Pullerits, and K. Zheng, Chem. Sci. 13, 1734 (2022).
74. On the Thermoelectric Properties of Nb-doped SrTiO3 Epitaxial Thin Films, A. Chatterjee, Z. Lan, D. V. Christensen, F. Baiutti, A. Morata, E. Chavez-Angel, S. Sanna, I. E. Castelli, Y. Chen, A. Tarancon, and N. Pryds, Phys. Chem. Chem. Phys. 24, 3741 (2022).
73. Autonomous Design of Photoferroic Ruddlesden-Popper Perovskites for Water Splitting Devices, A. C. Ludvigsen, Z. Lan, and I. E. Castelli, Materials 15, 309 (2022).
72. Towards Autonomous High-throughput Multiscale Modelling of Battery Interfaces, Z. Deng, V. Kumar, F. T. Bölle, F. Caro, A. A. Franco, I. E. Castelli, P. Canepa, and Z. Wei Seh, Energy and Environmental Science 15, 579 (2022).
71. Bandgap Prediction of Metal Halide Perovskites using Regression Machine Learning Models, V. Vakharia, I. E. Castelli, K. Bhavsar, and A. Solanki, Physics Letters A 422, 127800 (2022).
70. A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+, J. Amici, P. Asinari, E. Ayerbe, P. Barboux, P. Bayle-Guillemaud, R. J. Behm, M. Berecibar, E. Berg, A. Bhowmik, S. Bodoardo, I. E. Castelli, et al., Adv. Energy Mater. 2022, 2102785 (2022).
69. Understanding Battery Interfaces by Combined Characterization and Simulation Approaches: Challenges and Perspectives, D. Atkins, E. Ayerbe, A. Benayad, F. G. Capone, E. Capria, I. E. Castelli, I. Cekic-Laskovic, R. Ciria, L. Dudy, K. Edström, M. R. Johnson, H. Li, J. M. Garcia-Lastra, M. L. De Souza, V. Meunier, M. Morcrette, H. Reichert, P. Simon, J.-P. Rueff, J. Sottmann, W. Wenzel, and A. Grimaud Adv. Energy Mater. 2021, 2102687 (2021).
68. Workflow Engineering in Materials Design within the BATTERY 2030+ Project, J. Schaarschmidt, J. Yuan, T. Strunk, I. Kondov, S. P. Huber, G. Pizzi, L. Kahle, F. T. Bölle, I. E. Castelli, T. Vegge, F. Hanke, T. Hickel, J. Neugebauer, C. R. C. Rêgo, and W. Wenzel, Adv. Energy Mater. 2021, 2102638 (2021).
67. Rechargeable Batteries of the Future - The State of the Art from a BATTERY 2030+ Perspective, M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik, I. E. Castelli, S. Clark, R. Dominko, M. Erakca, A. A. Franco, A. Grimaud, B. Horstmann, A. Latz, H. Lorrmann, M. Meeus, R. Narayan, F. Pammer, J. Ruhland, H. Stein, T. Vegge, and M. Weil, Adv. Energy Mater. 2021, 2102638 (2021).
66. Enhancing Oxygen Evolution Reaction Activity by Using Switchable Polarization in Ferroelectric InSnO2N, Z. Lan, D. R. Småbråten, C. Xiao,T. Vegge, U. Aschauer, and I. E. Castelli, ACS Catal. 11, 12692 (2021).
65. Data Management Plans: the Importance of Data Management in the BIG-MAP Project, I. E. Castelli, D. J. Arismendi-Arrieta, A. Bhowmik, I. Cekic-Laskovic, S. Clark, R. Dominko, E. Flores, J. Flowers, K. Ulvskov Frederiksen, J. Friis, A. Grimaud, K. Vels Hansen, L. J. Hardwick, K. Hermansson, L. Königer, H. Lauritzen, F. Le Cras, H. Li, S. Lyonnard, H. Lorrmann, N. Marzari, L. Niedzicki, G. Pizzi, F. Rahmanian, H. Stein, M. Uhrin, W. Wenzel, M. Winter, C. Wölke, and T. Vegge, Batteries & Supercaps 4, 1803 (2021).
64. Automatic Migration Path Exploration for Multivalent Battery Cathodes using Geometrical Descriptors, F. T. Bölle, A. Bhowmik, T. Vegge, J. M. García-Lastra, and I. E. Castelli, Batteries & Supercaps 4, 1516 (2021).
63. Free Carriers versus Self-Trapped Excitons at Different Facets of Ruddlesden-Popper Two-Dimensional Lead Halide Perovskite Single Crystals, M. Liang, W. Lin, Q. Zhao, X. Zou, Z. Lan, J. Meng, Q. Shi, I. E. Castelli, S. Canton, T. Pullerits, and K. Zheng, J. Phys. Chem. Lett. 12, 4965 (2021).
62. Electromechanically Active Pairs Dynamics in Gd-doped Ceria Single Crystal, S. Santucci, H. Zhang, A. Kabir, C. Marini, S. Sanna, J. K. Han, E. M. Heppke, I. E. Castelli, and V. Esposito, Phys. Chem. Chem. Phys. 23, 11233 (2021). Selected as Hot Paper.
61. Theoretical Insight on Anion Ordering, Strain, and Doping Engineering of the Oxygen Evolution Reaction in BaTaO2N, Z. Lan, T. Vegge, and I. E. Castelli, Chem. Mater. 33, 3297 (2021).
60. Atomic-Scale Observation of Oxygen Vacancy-Induced Step Reconstruction in WO3, J. Meng, Z. Lan, I. E. Castelli, and K. Zheng, J. Phys. Chem. C 125, 15 (2021).
59. Nonlinear Photoelectric Properties by Strained MoS2 and SnO2 Core-Shell Nanotubes for Flexible Visible Light Photodetectors, J. K. Han, D. S. Song, Y. R. Lim, R. E. Agbenyeke, I. E. Castelli, V. Esposito, S. Y. Kim, S. D. Bu, W. Song, S. Myung, S. S. Lee, and J. Lim, Adv. Mater. Technol. 6, 2001105 (2021).
58. Structural and Chemical Mechanisms Governing Stability of Inorganic Janus Nanotubes, F. T. Bölle, A. E. G. Mikkelsen, K. S. Thygesen, T. Vegge, and I. E. Castelli, npj Computational Materials 7, 41 (2021).
57. Influence of the Artificial Nanostructure on the LiF Formation at the Solid-Electrolyte Interphase of Carbon-Based Anodes, K. L. Svane, S. Z. Lefmann, M. S. Vilmann, J. Rossmeisl, and I. E. Castelli, ACS Appl. Energy Mater. 4, 35 (2021).
56. Band Structure of MoSTe Janus Nanotubes, A. E. G. Mikkelsen, F. T. Bölle, K. S. Thygesen, T. Vegge, and I. E. Castelli, Phys. Rev. Materials 5, 014002 (2021).
55. Exploring the Intrinsic Point Defects in Cesium Copper Halides, Z. Lan, J. Meng, K. Zhang, and I. E. Castelli, J. Phys. Chem C. 125, 1592 (2021).
54. Oxygen Evolution Reaction Activity and Underlying Mechanism of Perovskite Electrocatalysts at Different pH, B.-J. Kim, E. Fabbri, M. Borlaf, D. F. Abbott, I. E. Castelli, M. Nachtegaal, T. Graule, and T. J. Schmidt, Mater. Adv. 2, 345 (2021).
53. Synergistic Effects in Oxygen Evolution Activity of Mixed Iridium-Ruthenium Pyrochlores, R. K. Pittkowski, D. F. Abbott, R. Nebel, S. Divanis, E. Fabbri, I. E. Castelli d , T. J. Schmidt, J. Rossmeisl, and P. Krtil, Electrochimica Acta 366, 137327 (2021).
52. Atomic-scale Insights into Electro-steric Substitutional Chemistry of Cerium Oxide, H. Zhang, I. E. Castelli, S. Santucci, S. Sanna, N. Pryds, and V. Esposito, Phys. Chem. Chem. Phys. 22, 21900 (2020).
51. Air Stable, High-Efficiency, Pt-Based Halide Perovskite Solar Cells with Long Carrier Lifetimes, D. Schwartz, R. Murshed, H. Larson, B. Usprung, S. Soltanmohamad, R. Pandey, E. S. Barnard, A. Rockett, T. Hartmann, I. E. Castelli, and S. Bansal, Phys. Status Solidi RRL 2020, 2000182 (2020).
50. Metastability at Defective Metal Oxide Interfaces and Nanoconfined Structures, V. Esposito and I. E. Castelli, Adv. Mater. Interfaces 2020, 1902090 (2020).
49. Modulating Charge-Carrier Dynamics in Mn-Doped All-Inorganic Halide Perovskite Quantum Dots through the Doping-Induced Deep Trap States, J. Meng, Z. Lan, M. Abdellah, B. Yang, S. Mossin, M. Liang, M. Naumova, Q. Shi, S. L. Gutierrez Alvarez, Y. Liu, W. Lin, I. E. Castelli, S. E. Canton, T. Pullerits, and K. Zheng, J. Phys. Chem. Lett. 11, 3705 (2020).
48. Electronic Structure and Trap-States of Two-Dimensional Ruddlesden-Popper Perovskites with Relaxed Goldschmidt Tolerance Factor, M. Liang, W. Lin, Z. Lan, J. Meng, Q. Zhao, X. Zou, I. E. Castelli, T. Pullerits, S. E. Canton, and K. Zheng, ACS Applied Electronic Materials 2, 1402 (2020).
47. Machine-learning Structural and Electronic Properties of Metal Halide Perovskites Using a Hierarchical Convolutional Neural Network, W. A. Saidi, W. Shadid, and I. E. Castelli, npj Computational Materials 6, 36 (2020).
46. The Role of an Interface in Stabilizing Reaction Intermediates for Hydrogen Evolution in Aprotic Electrolytes, I. E. Castelli, M. Zorko, T. M. Østergaard, P. F. B. D. Martins, P. P. Lopes, B. K. Antonopoulos, F. Maglia, N. M. Markovic, D. Strmcnik, and J. Rossmeisl, Chem. Sci. 11, 3914 (2020).
45. Effect of High Oxygen Deficiency in Nano-confined Bismuth Sesquioxide, S.Sanna, E. Fiordaliso, T. Kasama, I. E. Castelli, and V. Esposito, J. Phys.: Energy 2, 024010 (2020).
44. Autonomous Discovery of Materials for Intercalation Electrodes, F. T. Bölle, N. R. Mathiesen, A. J. Nielsen, T. Vegge, J. M. García-Lastra, and I. E. Castelli, Batteries & Supercaps 3, 488 (2020).
43. Towards Photoferroic Materials by Design: Recent Progress and Perspectives, I. E. Castelli, T. Olsen, and Y. Chen, J. Phys.: Energy 2, 011001 (2020).
42. Yttrium Tantalum Oxynitride Multiphases as Photoanodes for Water Oxidation, W. Si, Z. P. Tehrani, F. Haydous, N. Marzari, I. E. Castelli, D. Pergolesi, and T. Lippert, J. Phys. Chem. C 123, 26211 (2019).
41. Design and Synthesis of Ir/Ru Pyrochlore Catalysts for the Oxygen Evolution Reaction Based on Their Bulk Thermodynamic Properties, D. F. Abbott, R. K. Pittkowski, K. Macounova, R. Nebel, E. Marelli, E. Fabbri, I. E. Castelli, P. Krtil, and T. J. Schmidt, ACS Appl. Mater. Interfaces 11, 37748(2019).
40. A Perspective on Inverse Design of Battery Interphases using Multi-scale Modelling, Experiments and Generative Deep Learning, A. Bhowmik, I. E. Castelli, J. M. García-Lastra, P. B. Jørgensen, O. Winther, and T. Vegge, Energy Storage Materials 21, 446 (2019).
39. Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-δ: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stability, B.-J. Kim, E. Fabbri, I. E. Castelli, M. Borlaf, T. Graule, M. Nachtegaal, and T. J. Schmidt, Catalysts 9, 263 (2019).
38. Functional Role of Fe-Doping in Co-Based Perovskite Oxide Catalysts for Oxygen Evolution Reaction, B.-J. Kim, E. Fabbri, D. F. Abbott, X. Cheng, A. H. Clark, M. Nachtegaal, M. Borlaf, I. E. Castelli, T. Graule, and T. J. Schmidt, J. Am. Chem. Soc. 141, 5231 (2019).
37. High-Entropy Alloys as a Discovery Platform for Electrocatalysis, T. A.A. Batchelor, J. K. Pedersen, S. H. Winther, I. E. Castelli, K. W. Jacobsen, and J. Rossmeisl, Joule 3, 1 (2019).
36. Precision and Efficiency in Solid-state Pseudopotential Calculations, G. Prandini, A. Marrazzo, I. E. Castelli, N. Mounet, and N. Marzari, npj Computational Materials 4, 72 (2018).
35. Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δ, B.-J. Kim, X. Cheng, D. Abbott, E. Fabbri, F. Bozza, T. Graule, I. E. Castelli, L. Wiles, N. Danilovic, K. E. Ayers, N. Marzari, and T. J. Schmidt, Advanced Functional Materials 28, 1804355 (2018).
34. Oxygen Evolution Reaction on Perovskites: A Multieffect Descriptor Study Combining Experimental and Theoretical Methods, X. Cheng, E. Fabbri, Y. Yamashita,I. E. Castelli, B. Kim, M. Uchida, R. Haumont, I. Puente-Orench, and Thomas J. Schmidt, ACS Catal. 8, 9567 (2018).
33. Effects of the Cooperative Interaction on the Diffusion of Hydrogen on MgO(100), I. E. Castelli, S. G. Soriga, and I. C. Man, J. Chem. Phys. 149, 034704 (2018).
32. Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces, T. Østergaard, L. Giordano, I. E. Castelli, F. Maglia, B. K. Antonopoulos, Y. Shao-Horn, and J. Rossmeisl, J. Phys. Chem. C 122, 10442 (2018).
31. Electrocatalytic Transformation of HF Impurity to H2 and LiF in Lithium Ion Batteries, D. Strmcnik, I. E. Castelli, J. G. Connell, D. Haering, M. Zorko, P. Martins, P. P. Lopes, B. Genorio, T. Østergaard, H. Gasteiger, F. Maglia, B. K. Antonopoulos, V. R. Stamenkovic, J. Rossmeisl, and N. M. Markovic, Nature Catalysis 1, 255 (2018).
30. Two-dimensional Materials from High-throughput Computational Exfoliation of Experimentally Known Compounds, N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Nature Nanotechnology 13, 246 (2018).
29. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films, A. Fluri, E. Gilardi, M. Karlsson, V. Roddatis, M. Bettinelli, I. E. Castelli, T. Lippert, and D. Pergolesi, J. Phys. Chem. C 121, 21797 (2017).
28. Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments, I. E. Castelli, I.-C. Man, S.-G. Soriga, V. Parvulescu, N. B. Halck, and J. Rossmeisl, J. Phys. Chem. C 121, 18608 (2017).
27. Defect Chemistry and Electrical Conductivity of Sm-Doped La1-xSrxCoO3-δ for Solid Oxide Fuel Cells, M. E. Björketun, I. E. Castelli, J. Rossmeisl, T. Olsen, K. Ukai, M. Kato, G. Dennler, and K. W. Jacobsen, J. Phys. Chem. C 121, 15017 (2017).
26. Highly Active and Stable Iridium Pyrochlores for Oxygen Evolution Reaction, D. Lebedev, M. Povia, K. Waltar, P. M. Abdala, I. E. Castelli, E. Fabbri, M. V. Blanco, A. Fedorov, C. Coperet, N. Marzari, and T. J. Schmidt, Chem. Mater. 29, 5812 (2017).
25. The Atomic Simulation Environment - A Python Library for Working with Atoms, A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, et al., J. Phys.: Condens. Matter 29, 273002 (2017).
24. Determination of Conduction and Valence Band Electronic Structure of LaTiOxNy Thin Film, M. Pichler, J. Szlachetko, Ivano E. Castelli, N. Marzari, M. Döbeli, A. Wokaun, D. Pergolesi, and T. Lippert, ChemSusChem 10, 2099 (2017).
23. Unraveling Thermodynamics, Stability, and Oxygen Evolution Activity of Strontium Ruthenium Perovskite Oxide, B.-J. Kim, D. F. Abbott, X. Cheng, E. Fabbri, M. Nachtegaal, F. Bozza, I. E. Castelli, D. Lebedev, R. Schaublin, C. Coperet, T. Graule, N. Marzari, and T. J. Schmidt, ACS Catalysis 7, 3245 (2017).
22. The Synergetic Surface Sensitivity of Photo-Electrochemical Water Oxidation on TiO2 (Anatase) Electrodes, K. M. Macounova, M. Klusackova, R. Nebel, M. Zukalova, M. Klementova, I. E. Castelli, M. D. Spo, J. Rossmeisl, L. Kavan, and P. Krtil, The Journal of Physical Chemistry C 121, 6024 (2017).
21. Reproducibility in Density Functional Theory Calculations of Solids, K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V. Blum, D. Caliste, I. E. Castelli, et al., Science 351 (6280), 1415 (2016).
20. The Oxygen Evolution Reaction on La1-xSrxCoO3 Perovskites: A Combined Experimental and Theoretical Study of Their Structural, Electronic, and Electrochemical Properties, X. Cheng, E. Fabbri, M. Nachtegaal, I. E. Castelli, M. El Kazzi, R. Haumont, N. Marzari, and T. J. Schmidt, Chem. Mater. 27, 7662 (2015).
19. Calculated Optical Absorption of Different Perovskite Phases, I. E. Castelli, K. S. Thygesen, and K. W. Jacobsen, J. Mater. Chem. A 3, 12343 (2015).
18. Bandgap Engineering of Functional Perovskites Through Quantum Confinement and Tunneling, I. E. Castelli, M. Pandey, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev B 91, 165309 (2015).
17. Strain Sensitivity of Band Gaps of Sn-containing Semiconductors, H. Li, I. E. Castelli, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev B 91, 045204 (2015).
16. New Light Harvesting Materials Using Accurate and Efficient Bandgap Calculations, I. E. Castelli, F. Hüser, M. Pandey, H. Li, K. S. Thygesen, B. Seger, A. Jain, K. A. Persson, G. Ceder, and K. W. Jacobsen, Advanced Energy Materials 5, 1400915 (2015).
15. Bandgap Calculations and Trends of Organometal Halide Perovskites, I. E. Castelli, J. M. García-Lastra, K. S. Thygesen, and K. W. Jacobsen, APL Materials 2, 081514 (2014).
14. 2-Photon Tandem Device for Water Splitting: Design Parameters and Feasibility, B. Seger, I. E. Castelli, P. C. K. Vesborg, K. W. Jacobsen, O. Hansen, and I. Chorkendorff, Energy and Environmental Science 7, 2397 (2014).
13. Designing Rules and Probabilistic Weighting for Fast Materials Discovery in the Perovskite Structure, I. E. Castelli, and K. W. Jacobsen, Modelling Simul. Mater. Sci. Eng. 22, 055007 (2014).
12. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion, I. E. Castelli, K. S. Thygesen, and K. W. Jacobsen, Topics in Catalysis 57, 265 (2014).
11. Stability and Band Gaps of Layered Perovskites for One- and Two-photon Water Splitting, I. E. Castelli, J. M. García-Lastra, F. Hüser, K. S. Thygesen, and K. W. Jacobsen, New Journal of Physics 15, 105026 (2013).
10 .Performance of Genetic Algorithms in Search for Water Splitting Perovskites, A. Jain, I. E. Castelli, G. Hautier, D. H. Bailey, and K. W. Jacobsen, Journal of Materials Science 48, 6519 (2013).
9. Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting, I. E. Castelli, K. S. Thygesen, and K. W. Jacobsen, MRS Online Proceedings Library 1523 (2013).
8. New Cubic Perovskites for One- and Two-Photon Water Splitting using the Computational Materials Repository, I. E. Castelli, D. D. Landis, K. S. Thygesen, S. Dahl, I. Chorkendorff, T. F. Jaramillo, and K. W. Jacobsen, Energy and Environmental Science 5, 9034 (2012).
7. Mechanical Properties of Carbynes Investigated by Ab Initio Total-energy Calculations, I. E. Castelli, P. Salvestrini, and N. Manini, Phys. Rev. B 85, 214110 (2012).
6. Computational Screening of Perovskite Metal Oxides for Optimal Solar Light Capture, I. E. Castelli, T. Olsen, S. Datta, D. D. Landis, S. Dahl, K. S. Thygesen, and K. W. Jacobsen, Energy and Environmental Science 5, 5814 (2012).
5. Carbon sp Chains in Graphene Nanoholes, I. E. Castelli, N. Ferri, G. Onida, and N. Manini, J. Phys.: Condens. Matter 24, 104019 (2012).
4. Vibrational Characterization of Dinaphthylpolyynes: A Model System for the Study of End-capped sp Carbon Chains, E. Cinquanta, L. Ravagnan, I. E. Castelli, F. Cataldo, N. Manini, G. Onida, and P. Milani, J. Chem. Phys. 135, 194501 (2011).
3. Synthesis, Characterization, and Modeling of Naphthyl-Terminated sp Carbon Chains: Dinaphthylpolyynes, F. Cataldo, L. Ravagnan, E. Cinquanta, I. E. Castelli, N. Manini, G. Onida, and P. Milani, J. Phys. Chem. B 114, 14834 (2010).
2. Tribology of the Lubricant Quantized Sliding State, I. E. Castelli, R. Capozza, A. Vanossi, G. E. Santoro, N. Manini, and E. Tosatti, J. Chem. Phys. 131, 174711 (2009).
1. Role of Transverse Displacements for a Quantized-velocity State of a Lubricant, I. E. Castelli, N. Manini, R. Capozza, A. Vanossi, G. E. Santoro, and E. Tosatti, J. Phys.: Condens. Matter 20, 354005 (2008).
Tailoring High-Entropy Oxides as Emerging Radiative Materials for Daytime Passive Cooling, C. Borghesi, C. Fabiani, R. Bondi, L. Latterini, I. E. Castelli, A. L. Pisello, and G. Giorgi, Chem. Mater. 35, 10384 (2023).
Reinforcement Learning-based Design of Shape-changing Metamaterials, S. B. Oliva, F. T. Bölle, X. Xia, and I. E. Castelli, J. Mater. Chem. A 11, 21036 (2023).
Accelerated Workflow for Antiperovskite-based Solid State Electrolytes, B. H. Sjølin, P. B. Jørgensen, A. Fedrigucci, T. Vegge, A. Bhowmik, I. E. Castelli, Batteries & Supercaps 2023, e202300041 (2023).
Synthesis of the Elusive Doublewall Nanotubes and Nanocones(Horns) of MoS2 via Focused Solar Ablation, T. Barbe, R. Rosentsveig, O. Brontvein, M. B. Sreedhara, K. Zheng, F. Bataille, A. Vossier, G. Flamant, I. E. Castelli, J. M. Gordon, and R. Tenne, Adv. Mater. Interfaces 2023, 202201930 (2023).
Metastability at Defective Metal Oxide Interfaces and Nanoconfined Structures, V. Esposito and I. E. Castelli, Adv. Mater. Interfaces 2020, 1902090 (2020).
Autonomous Discovery of Materials for Intercalation Electrodes, F. T. Bölle, N. R. Mathiesen, A. J. Nielsen, T. Vegge, J. M. García-Lastra, and I. E. Castelli, Batteries & Supercaps 3, 488 (2020).
source: nature.com
Two-dimensional Materials from High-throughput Computational Exfoliation of Experimentally Known Compounds, N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Nature Nanotechnology 13, 246 (2018).
New Light Harvesting Materials Using Accurate and Efficient Bandgap Calculations, I. E. Castelli, F. Hüser, M. Pandey, H. Li, K. S. Thygesen, B. Seger, A. Jain, K. A. Persson, G. Ceder, and K. W. Jacobsen, Advanced Energy Materials 5, 1400915 (2015).
Bandgap Calculations and Trends of Organometal Halide Perovskites, I. E. Castelli, J. M. García-Lastra, K. S. Thygesen, and K. W. Jacobsen, APL Materials 2, 081514 (2014).
Carbon sp Chains in Graphene Nanoholes, I. E. Castelli, N. Ferri, G. Onida, and N. Manini, J. Phys.: Condens. Matter 24, 104019 (2012).
High electrically conducting current collector ceramic material for Solid Oxides Fuel Cells, inventors: M. Kato, K. Ukai, K. Okada, K. Miura, K. W. Jacobsen, J. Rossmeisl, M. Björketun, I. E. Castelli, T. Olsen. Publication number (granted patent): EP 3211703 B1 (2019).
High electrically conducting current collector ceramic material for Solid Oxides Fuel Cells, inventors: M. Kato, K. Ukai, K. Okada, K. Miura, K. W. Jacobsen, J. Rossmeisl, M. Björketun, I. E. Castelli, T. Olsen. Publication number (granted patent): JP 2017157553 A (2017).
Generation of Computational Data Sets for Machine Learning Applied to Battery Materials, A. Bhowmik, F. T. Bölle, I. E. Castelli, J. H. Chang, J. M. García-Lastra, N. R. Mathiesen, A. S. Tygesen, and T. Vegge, in Atomic‐Scale Modelling of Electrochemical Systems, ed. M. M. Melander, T. T. Laurila, and K. Laasonen, Wiley, September 2021.
Fundamental Atomic Insight in Electrocatalysis, A. Bagger, I. E. Castelli, M. H. Hansen, and J. Rossmeisl, in Handbook of Materials Modeling, ed. W. Andreoni and S. Yip, Springer, July 2018.
Computational Screening of Light-Absorbing Materials for Photoelectrochemical Water Splitting, I. E. Castelli, K. Kuhar, M. Pandey, and K. W. Jacobsen, in Advances in Photoelectrochemical Water Splitting, ed. D. Tilley, S. Lany and R, van de Krol, RSC Editor, February 2018.
Computational High-throughput Screening for Solar Energy Materials, I. E. Castelli, K. S. Thygesen, and K. W. Jacobsen, in Theoretical Modeling of Organohalide Perovskites for Photovoltaic Applications, ed. G. Giorgi and K. Yamashita, CRC Press, June 2017.
Computational Screening of Materials for Water Splitting Applications, I. E. Castelli, Ph.D. thesis (2013).
Structural and Magnetic Properties of sp-Hybridized Carbon, I. E. Castelli, Master thesis (2010).
Quantized Lubricant Velocity in a Bi-Dimensional Sliding Model, I. E. Castelli, Bachelor thesis (2007).
The Atomic Simulation Environment - A Python library for working with atoms, A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, et al., Ψk Scientic Highlight Of The Month No. 134, January 2017.

Student Projects

We offer student projects at all levels, contact us to hear more.

Oxynitride perovskites have shown great potential as catalysts to split water in oxygen and hydrogen using solar light. It has also been demonstrated that by engineering strain in these materials, it is possible way to reduce the overpotentials needed to split water, and, in particular, for the Oxygen Evolution Reaction (OER), which is the bottleneck in the water splitting reactions. Recently, new oxynitrides, such as InSnO2N, have been suggested as a catalyst for water splitting, which combines optimal light harvesting properties with ferroelectricity, which can help in increasing the charge separation and the photo-voltage obtainable from these material. In this project, the student will identify optimal strain conditions to apply to the photocatalyst for reducing the overpotentials for OER. The student will use Density Functional Theory (DFT) to estimate bulk and surface properties.

Strain Engineering of Oxynitrides for Increased Activity of the Oxygen Evolution Reaction

One-dimensional inorganic nanotubes hold promise for technological applications due to their distinct physical/chemical properties, but so far advancements have been hampered by difficulties in producing single-wall nanotubes with a well-defined radius. Recently, we have investigated the formation mechanism of 135 different inorganic nanotubes formed by the intrinsic self-rolling driving force found in asymmetric 2D Janus sheets in the 1T and 2H prototypes. In this project, the student will screen the literature for more 2D Janus prototypes and apply an autonomous workflows, in the framework of DFT, to estimate the most stable radii of the nanotubes obtained by rolling up the 2D Janus sheet.

New Janus Inorganic Nanotubes

We have recently shown that nanometric inorganic nanotubes can be formed by rolling up 2D Janus monolayers. The broken symmetry between the top and bottom side of the 2D layer generates a planar strain, which drives the rolling of the 2D sheet into a 1D nanotube. In some cases, the stain is not enough to generate a single-wall 1D tube. On the other side, the stability can be enhanced by creating a multi-walled tube or a scroll. In this project, the student will study, using DFT, the stability and electronic properties of the bi-wall nanotubes and beyond, addressing the question of how properties change as a function of the number of walls in 1D nanotubes and how they correlate with the 2D counterpart.

Beyond Single-wall Nanotubes

Carbon and inorganic nanotubes can be used as solid lubricants. Their two main limitations are that their coefficients of friction are higher than the ones of liquid lubricants and that, once damaged, the dolid lubricant need to be replaces, which can be impossible in some devices. In this project, the student will investigate the class of Janus thin films to identify nanostructures with low friction coefficients and where the 2D sheet (which can be formed by damaging the thin film) can self-roll into a nanotube, thus increasing the lubricant properties of the interface.

Self-healing Solid Lubricants

Usign a similar approach as we have applied to study the formation of 1D nanotubes from 2D Janus sheets, the student will investigate the formation of 0D inorganic fullerenes from 2D Janus layers and compare them with the 1D counterpart.

0D Materials

Multivalent batteries such as magnesium and calcium batteries constitutes an example of promising, alternative non-Li energy storage systems. One of the key challenges for a broader use of these technology is the limited capacity and voltage associated with the current state-of-the-art materials. In this project, the student will use density functional theory (DFT) and a recent implemented workflow to identify possible new cathode materials for multivalent batteries. The student will calculate relevant properties such as the theoretical battery open circuit voltage and ion diffusion properties. If the cathode performs better than the state-of-the-art materials, the student will proceed with the more accurate calculations. Possible candidate materials will be investigated experimentally by some of our experimental partners.

High-throughput Screening of Cathode Materials for Efficient Multivalent Batteries

A metamaterial is a material engineered to show properties that are not found in its naturally occurring form. Metamaterials are made from assembling multiple elements, or building blocks, arranged in repeating patterns, generally at smaller scales than the phenomena they influence. Metamaterials thus derive their properties not only from the properties of the base materials (atoms and bonds), as for conventional compounds, but from their newly designed, well defined structures. A conventional material, for example, is compressed under pressure. Despite the large potential, metamaterials have not been designed yet to improve electrochemical devices. In this project, the student will design building block based on carbon for metamaterials using quantum mechanical calculations in the framework of Density Functional Theory. The goal is to identify building blocks that have potential to be used as anode materials in Li-ion batteries to improve the storage capacity and charge properties of graphite. Properties like Li adsorption energy, Li coverage, and diffusion barriers will be descriptors to identify promising structures. Once that the building blocks have been identified, we will proceed to build a complex metamaterial using artificial intelligence tools.

Battery Metamaterials

Perovskite materials have shown a manifold of exciting properties and have been used in multiple applications, from electronics to solar cells, from catalysis to batteries. Antiperovskites have a similar crystal structure, but the position of the cations and anions is reverted. This has the effect of enhancing their functionalities paying off a reduction in the overall stability. Despite the numerous potential applications, a library of antiperovskites, together with a fundamental understanding of their physico-chemical properties, is still missing. Beyond perovskites, other structures, such as spinel, can sustain the inversion of the charge. In this project, the student will discovery simple rules to design stable antiperovskite materials by calculating their properties using Density Functional Theory (DFT).

Inverted Charge Crystals for Energy Applications

A solid oxide fuel cell (SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel, such as water from oxygen and hydrogen molecules. Several materials have been proposed as SOFC cathodes, like, for example, LaSrCoO3 and its doped structures. Very recently it has been shown that the perovskite material Zr0.4Ce0.4Y0.1Yb0.1O3 (BZCYYb4411) has significantly improved the current state-of-the-art of cathode materials because of its high stability and catalytic properties. The main hypothesis here is that the high-entropy of this and similar materials plays a key role to stabilize the structure and in creating the electrochemical conditions for the good catalytic properties. In this project, the student will study the structural and catalytic properties of some of the most promising high-entropy SOFC materials using Density Functional Theory (DFT) and Artificial Intelligence (AI) in the framework of the Cluster Expansion Method. AI is required to study the exact crystal structure of the materials and how the various elements interact with each other. In addition to explain the properties of these materials, the goal of the project is to identify trends and descriptors for designing novel, improved high-entropy oxides. Experimental and industrial collaborators will synthesize the discovered materials.

High-entropy Oxides for Solid Oxide Fuel Cells

Research Data

We strongly believe in open-access to curated research data. During the last ten years, we have contributed to establish a number of open-access databases, which contain our data:

Computational Materials Repository

Perovskites for energy related applications.

Materials Cloud

Standard Solid-State Pseudopotential Library (SSSP) for high-throughput calculations using Quantum Espresso.

KatlaDB

Trends in catalysis and Kondo effect in molecules.

DTU Data Repository

1D Nanotubes, battery electrodes, ...

Group Members

Zhenyun Lan

Researcher

Xueping Qin

Postdoc

Kai Zheng

PhD Student

Benjamin H. Sjølin

PhD Student

Armando A. Morin-Martinez

PhD Student

Joonyeob Jeon

PhD Student

Simon Krarup Steensen

PhD Student

Mie Engelbrecht Jensen

PhD Student

Lotte T. J. Kortstee

PhD Student

Katrine Hjort

MSc Student

Atlas


Alumni:

  • Postdocs:
    • Luca Silvioli (2020-2022)
    • Felix T. Bölle (2021-2022)
    • Katrine L. Svane (2020-2021)
  • PhD Students:
    • Zhenyun Lan (2018-2021)
    • August E. G. Mikkelsen (2018-2021)
    • Felix T. Bölle (2018-2021)
  • MSc Students:
    • Lotte T. J. Kortstee (2023) - Green Challenge 3rd prize (MSc Thesis)
    • Chiara Spezzati (2023) - Green Challenge 1st price (MSc Project Course)
    • Sergi B. Oliva (2022)
    • Syuan Y. Wang (2022)
    • Andrea Fedrigucci (2021)
    • Bejamin H. Sjølin (2021)
  • BSc Students:
    • Chiara Spezzati (2021)
    • Alexandra C. Ludvigsen (2021)
    • Jacob L- Matthiessen (2020)
    • Nestor Chatenet (2020)
    • Alexander J. Nielsen (2019)
    • Peter Ebert Christensen (2018)
  • Visiting PhD Students:
    • Valentina Diolaiti (2022)
    • Costanza Borghesi (2022; 2023)
    • Dengxin Yan (2021)

Track and Field

Personal Bests:

400 m: 50.24 (2009; Rovellasca, I)
600 m: 1:21.83 (2008; Chiasso, CH)
800 m: 1:52.52 (2010; Mondovì, I)
800 m indoor: 1:54.77 (2012; Magglingen, CH)
1000 m indoor: 2:33.68 (2006; Ancona, I)
1500 m: 3:56.10 (2010; Bagsværd, DK)
5000 m: 15:49 (2004; Milano, I)

800 meters progression. 2005: 1:58.66; 2006: 1:55.98; 2007: 1:53.40; 2008: 1:54.90; 2009: 1:53.57; 2010: 1:52.52; 2011: 1:53.94; 2012: 1:54.22; 2013-15: ---; 2016: 2:05.66; 2017: 2:03.47.




Canicross (Atlas, Visla, @atlas_the_vizsla)

1 km: 2:24 (2021)
2 km: 5:56 (2020)
3 km: 9:06 (2020)
5 km: 16.45 (2021)
Danish Champions Canicross 2022
IFSS European Championships, Leipa 2022: 39th (Senior Elite)

Contact