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Abstract

We perform extended calculations of the electronic structure and geomet-

rical optimization of composed carbon structures where carbon acquires

its sp (carbynes) or sp2 (graphene and aromatic components) hybrid char-

acter. We evaluate the electronic structure within the Density Functional

Theory (DFT) in the Local Spin Density Approximation (LSDA), which

provides a reliable estimate of the total adiabatic energy. We minimize

the latter to obtain the locally stable structures and binding energies.

We also evaluate magnetic structures, and, by density functional per-

turbation theory, vibrational properties (frequencies plus infrared and

Raman intensities). We find that carbyne linear chains bind strongly to

graphene and aromatic structures, usually acquiring a markedly polyynic

character (large bond length alternation of single-triple bonds).
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CHAPTER 1

Introduction

The rich chemistry of carbon may be interpreted as being due to carbon’s capability of

adjusting its electronic configuration to different bonding situation. This ability arises from

the comparably small energy difference of atomic 2s and 2p functions (8.2 eV in density-

functional calculations, 7.1 eV from the NIST Atomic Spectra Database [1]). The element

carbon can realize three main hybridization schemes of the valence atomic orbitals: sp3,

sp2, and sp hybridization. Three-dimensional carbon networks due to the sp3 bonding form

diamond and related amorphous structures. Two-dimensional networks are due to the sp2

hybridized orbitals and form graphite, graphene, and its amorphous counterpart. sp hy-

bridized atomic orbitals form linear chains, discovered in nature as late as in 1968 [2], called

carbynes. Carbynes are interesting not only for their properties, but also for the fact that

in the phase diagram of carbon, their field of existence coincide with that of fullerenes [3].

Indeed, carbynes are part of the clouds present in interstellar regions of space together with

fullerenes [4, 5], amorphous carbon dust, cyanopolyynes, and oligopolyynes. These clouds

were formed with the explosions of carbon stars, novae and supernovae.

In the labs, one of the methods for the synthesis of a mixture of carbynes of different

lengths is using an electric arc between graphite electrodes [6]. That is also one of the meth-

ods for the bulk production of fullerenes and carbon nanotubes. By an electric arc between

two graphite electrodes submerged in a solvent like decalin or acetonitrile, one can produce

a range of even-length carbon chains (4 to 16 atoms), terminated by one hydrogen at each

end. Such solution is stable in air over a week time scale. Jin et al. [7], have introduced

a new approach to realize carbon chains by stretching and thinning a graphene nanoribbon

from its two open ends by removing carbon rows until the number of rows becomes one or

two. These chains show a good stability under Transmission Electron Microscopy (TEM)

and lengths up to few nanometers. Matsuda et al. [8] and Kudryavtsev [9] have shown

the possibility of synthesizing carbyne by oxidative dehydropolycondensation of acetylene:

carbyne powder was obtained by passing acetylene through an aqueous ammoniacal solution

of a copper salt. Cataldo and Capitani [10], have revealed that the carbonaceous mat-

ter obtained is rich in carbynoid structures but also consist of sp2- and sp3-carbon atoms.

Polyynes in solution generated by laser ablation of graphite or fullerenes particles suspended

in an organic solvent, was the method used by Tsuji [11]. Carbyne can be produced from

carbon by dynamic pressure (Yamada et al. [12], Kleiman et al. [13]): the method was
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8 1. INTRODUCTION

based on the pressure-temperature phase and transformation diagram of carbon; the critical

point, which has been estimated for transformations from graphite to other solid phases

(carbyne), is 0.2 GPa/6800 K [3]. Ravagnan et al., have shown the possibility of growing a

pure carbon amorphous solid containing a significant amount of carbynoid structures (sp2

and sp hybridized) by supersonic carbon cluster beam deposition at room temperature and

in an ultra-high vacuum [14]. Carbon film with carbynoid structures were synthesized by

Donnet et al. [15] by a combustion reaction between oxygen and acetylene. Kavan [13] and

Kijima et al. [16] have used the electro-chemical method to synthesize carbyne: the charge

transfer reaction occurs at interface of a metal electrode and liquid electrolyte solution. The

advantage of this technique is the synthesis of a carbyne at room temperature. Carbyne or

carbynoid material resulting from the synthesis contained up to 300 carbon atoms, so this

technique is a promising strategy towards molecular engineering of sp-carbon structures.

Examples of this method are Ohmura et al. [17], oxidized acetylene in dimethylformamide

electrolyte solution containing CuCl catalyst, and Kijima et al. [18], reduced diiodoacetylide

to carbon at a platinum electrode in dimethylformamide media. This method has been used

by F. Cataldo to synthesize the molecule analyzed in Chap. 2.

Ab-initio methods based on Density-Functional Theory (DFT) are by now common

and well established tools for studying structural and vibrational properties of materials

on realistic grounds. The plane-wave pseudopotential method and the Local Spin-Density

Approximation (LSDA) to DFT have provided a simple framework whose accuracy have

been demonstrated in a variety of systems [19]. The computational methods used in the

present work are described in Appendix A.

1.1. Polyyne vs Cumulene

We can recognize two different limiting structures of carbynes: chain of alternate sin-

gle and triple bonds ([−C ≡ C − C ≡ C−]m) called polyyne or α−carbyne, contrasted to an

equally-spaced based on carbon−carbon double bonds ([= C = C = C = C =]m) called cu-

mulene or β−carbyne. Typical bond lengths are 138, 129, and 123 pm for single, double,

and triple bonds, respectively [13]. A simple quantity to characterize the degree of polyyn-

icity of the chain is the Bond-Length Alternation (BLA). The BLA measures the degree of

dimerization and, excluding terminal bonds, can be defined as:

(1) BLA =
1

2

[

∑ne

j=1 d2j−1 + dn−(2j−1)/ne −
∑no

j=1 d2j + dn−2j/no

]

,

with di = |−→r i −−→r i+1|, ne = (n+ 2) /4, and no = n/4 (integer part). Figure 1.1 shows the

difference between the all-equal bonds b0 of the cumulenic chain (in red) and the alternation

of single and triple bonds (b1 and b3, respectively) of the polyynic chain. The BLA is twice

the difference between b1 and b0. Panels (a) and (b) of Fig. 1.2 display the total energy per

atom for an infinite linear carbon chain as a function of the average C − C bond length. For
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Figure 1.1: In a cumulenic chain (in red) the distances between atoms

are all equal (b0); in a polyynic one (in blue) the distances are different

(b1 6= b3) for single/triple bonds. The BLA, defined in Eq. 1, measures

the degree of dimerization.

the cumulenic chain, we consider a unit cell with one carbon atom and for each value of the

cell length, we realize a self-consistent evaluation of the DFT-LSDA total energy; for the

polyynic chain, we consider a unit cell composed of two atoms and relax the atomic positions

for each cell size. Within DFT-LSDA the minimum of the total energy is obtained for the

a chain with a polyynic character (BLA ≃ 7 pm): the difference in binding energy between

the two types of chains is small, less than 0.1% for C − C ≤ 130 pm, where the difference

between the two bonds is lower than 7 pm; the BLA increases for C − C > 130 pm, where

the most stable configuration is the polyynic chain. A BLA equals to 5.5 pm is obtained

making a relaxing calculation in which we also relax the dimension of the cell along the chain

axis besides the atomic positions. As shown in Fig. 1.2(c), when C − C > 130 pm the length

of the triple bond stabilizes near 130 pm while the length of the other (the single bond)

increases with increasing unit cell. Figure 1.3(a) shows the binding energy per atom for a

linear polyynic chain with a unit-cell kept fixed at 260 pm (the cell that shows the minimum

value of the total energy in Fig. 1.2) as a function of the BLA (in pm). We consider structures

with two atoms per unit cell and gradually move every second atom away from midpoint of

the cell. The total energy varies very little upon the bond-length difference and the most

stable configuration has a BLA ≃ 7 pm; in respect to the value obtained by M. Springborg

reported in Ref. [13], our BLA is lower: in fact their calculations suggest that the most
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Figure 1.2: Panel (a): Binding energy per atom for an infinite cumu-

lenic chain (in solid red) and for an infinite polyynic chain (in dashed

blue) as a function of the mean C − C bond length (C − C). Fully

relaxed (in black) indicates the binding energy obtained for a relaxing

calculation in which we also relax the cell that contains the chain. In-

set (b): Enlargement of panel (a) near the region of minimum energy.

Panel (c): BLA value for an infinite polyynic chain as a function of

C − C: for a value of C − C lower or equal than 110 pm the BLA is

very small (BLA < 2 pm, i.e. the chain exhibits a cumulenic charac-

ter); for C − C greater than 110 pm the BLA increases linearly with

C − C (i.e. the chain becomes more and more dimerized with the

alternation single/triple bonds, typical of the polyynic chain).

stable configuration has a BLA ≃ 15. Despite this fact our calculations are in accordance

with was predicted by Peierls [20]: the most stable configuration has a polyynic character.

But in accordance with the Peierls’ distortion, it should display clearly the lower energy for

a chain with polyynic character and not as it happens in our calculations, where the energy

difference between the two types is not significative. In the fully relaxing calculation (black
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Figure 1.3: Binding energy per carbon atom (a) and energy gap (b)

as a function of the BLA (in pm) for an infinite polyyne with a unit

cell of 260 pm with 2 atoms per cell. The black diamond indicates the

value of the binding energy or that of the energy gap obtained making

a fully relaxing calculation, in which we also relax the dimension of

the cell along the chain axis.

diamond) in which we relax both the positions of the carbon atoms and the size of the cell,

the BLA equals 5.5 pm.

The non-zero BLA is accompanied by the opening of a gap at the Fermi level, as shown

in Fig. 1.3(b): for a BLA ≃ 6 pm, the chain shows a gap of about 0.7 eV. Figure 1.4 [13]

shows the electronic orbitals that split into two energetically deep-lying σ bands and into

two π bands around the Fermi level; the π bands of the cumulenic chain cross at Fermi

level ǫF , so that the chain has a 1D metallic behavior, while the corresponding bands of the

polyynic chain show a gap of about 2 eV so that the carbyne behaves as a semiconductor.

1.2. Different Terminations

As shown by Ravagnan et al. [21], the structural vibrational and electronic properties

of carbon chains are affected by the nature and geometry in the terminations. Weimer et.

al. [22] analyze how end groups and bond lengths influence the gap between the highest

occupied and the lowest unoccupied molecular orbital (HOMO and LUMO respectively):
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Figure 1.4: Band structures for an infinite carbyne for a structure

with (a) constant and (b) alternating bond length. The values k = 0

and k = 1 correspond to the center and the edge of the Brillouin zone

for a 1D repeated cell containing two atoms, respectively. The dashed

line marks the Fermi level [13]. A gap of about 2 eV opens in the π

bands of the polyynic chain.

for short chains (n = 4) the gaps of carbines with different single-bonds end groups (such

as CN, F, NH2, and NO2) ranges between 2.4 and 5.7 eV. In long chains (n = 28) the gap

decreases to 0.7 and 1.6 eV. Kijima et al. in Ref. [15], studied synthesis, properties, and

possible applications of polyyne with different ligands.

In the present thesis, motivated by experimental work carried out at our Department,

we consider carbon chains in two main different binding environments for carbynes: (i) gas-

phase molecules composed by linear chains terminated by a naphthalene group at each end

(Chap. 2); (ii) carbynes bound to a hole in a infinite graphene sheet (Chap. 3).



CHAPTER 2

The Naphthyl Termination

In this chapter, we investigate structural, vibrational, and electronic properties of car-

bynes terminated with two naphthyl groups, called dinaphthyl-carbyne. This class of

molecule was first synthesized by F. Cataldo using the Cadiot-Chodkiewicz reaction [23]

in which two copper naphthyl-acetylide bind to one or more diiodoacetylene, as shown in

Fig. 2.1.

Due to the synthesizing process, the resulting carbon chains is composed by an even-n

number of atoms. Using High Pressure Liquid Chromatography (HPLC), F. Cataldo was

able to estimate the relative molar concentration of the dinaphthyl-polyynes with different

+ =

=

diiodo−acetylide

2 I ICu

copper naphthyl−acetylide

dinaphthyl−polyyne

(m − 2)

m acetylide

Figure 2.1: Chemical structure of the Cadiot-Chodkiewicz reaction

used to produce a dinaphthyl-polyyne: 2 copper naphthyl-acetylide

react with m − 2 diiodoacetylides with the result of a dinaphthyl-

polyyne molecule composed of m acetylide groups.

13



14 2. THE NAPHTHYL TERMINATION

Chemical formula Concentration [mol]

NaphC2H 39.5%

Naph2C4 22.9%

Naph2C6 25.9%

Naph2C8 9.1%

Naph2C10 2.4%

Naph2C12 0.1%

Naph2C14 trace

Naph2C16 trace

Table 2.1: Relative molar concentration of the dinaphthyl-polyynes

as a function of the atoms that forms the carbyne obtained by F.

Cataldo, in Ref. [24], using HPLC.

length (i.e. as a function of the atoms that forms the carbyne), as reported in Table 2.1.

The symbol Naph2Cn is a shorthand for a dinaphthyl-polyyne with a carbyne of n atoms.

In our simulations, we consider molecules containing Cn chains with both even and odd

n, ranging from 4 to 16. The computational details are described in Appendix A.2.1.

2.1. Structural Properties

Our initial computational investigation focuses on the even-n carbon chains, for which

experimental data are obtained in our laboratory, using the samples synthesized by F.

Cataldo. Using structural optimization, we first of all compute fully relaxed molecular

structures. An example is shown in Fig. 2.2. Figure 2.2(b) reports the chemical structure of

Naph2C10 with the final relaxed bond lengths of the polyyne part: triple bonds are visibly

shorter than single bonds. Indeed, the single bond to the naphthyl group induces a dimeriza-

tion very much alike to the one that a termination with hydrogen would induce. Each atom

of the carbynic chain is sp-hybridized and carries two unhybridized p orbitals perpendicular

to the chain axis, plus two sp-hybrid orbitals aligned along the chain axis. The overlap of

sp orbital from each atom forms one sp− sp σ bond. The remaining px and py orbitals can

combine with the respective px and py orbitals of either the same on both adjacent atoms

forming two π bonds. In the first case, the one representing the polyynic compounds, the

bonds are alternately single and triple and the structure is dimerized. In the opposite case,

realized in e.g. CH2-Cn-CH2 cumulenes, the bonds are all double and the BLA is minimal.

The BLA, evaluated for the relaxed geometry of each compound according to Eq. (1),

decreases slightly as the chain length increases, as shown in Fig. 2.3. The BLA of long

carbynes tends to approach a value of ≃ 6 pm. The BLA evolves from 12 to 7 pm showing
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(a) Molecular structure

139 139132 132 132 132

123 123124 124 124
NaphNaph

(b) Chemical structure

Figure 2.2: Fully relaxed molecular structure (a) and chemical for-

mula (b), with bond lengths in pm, of a 10-atom sp-bonded carbon

chain terminated on sp2 polycyclic hydrocarbon (naphthyl group).

Carbon atoms are in blue, hydrogen ones in yellow. The exact chem-

ical name of the molecule is 1,10-(1,1′) dinaphthyl-decapentayne.

C-C Bond Lengths [pm]

Chemical formula BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8 BLA [pm]

Naph2C4 140 122 134 11.4

Naph2C6 139 123 133 123 10.0

Naph2C8 139 123 133 124 132 9.1

Naph2C10 139 123 132 124 132 124 8.3

Naph2C12 139 123 132 124 131 124 131 7.8

Naph2C14 139 123 132 124 131 124 131 125 7.5

Naph2C16 139 123 132 124 131 124 131 125 131 7.1

Table 2.2: C-C bond lengths of the first half of the chain (the second

half can be reconstructed using symmetry) and BLA both in pm for

the even-n chains. The bond length between the terminations and

the chain is not influenced by the length of the carbyne; the polyynic

character of the carbyne is marked by the values of BLA and by the

alternation in bonds length. The character becomes more cumulenic

with the increasing of the length of chain.



16 2. THE NAPHTHYL TERMINATION

4 5 6 7 8 9 10 11 12 13 14 15 16
number of sp atoms

4

6

8

10

12

B
L

A
 [p

m
]

6 12

even-n chains

odd-n chains

Figure 2.3: Bond-length alternation (BLA) as a function of the num-

ber n of atoms in the carbynic chain Naph-Cn-Naph for the even-n

chains (in solid blue) and for the odd-n chains (in dashed red).

a polyynic behavior (more evident for the short chains) despite the chains being bonded to

sp2 sites: comparing this BLA with the one computed for the different chains, investigated

in Ref. [21], dinaphthyl-polyynes have a BLA closer to the sp3 terminated chains (e.g. -H

or -C20 terminated) than to sp2 terminated ones (-CH2 or graphene terminated ones).

The length of the bond between the first atom of the sp chain and the C atom of the

terminating group (BL0 ≃ 139 pm) reported in Table 2.2, appears only weakly affected by

the chain length and is determinated primarily by the typology of the ligand. The longer is

this first C-ligand bond, the more polyynic is the ensuring chain character; in fact, the length

of the first bond relates to bond order of the C-ligand bond: the two extreme cases are -CH2

terminated chains (double bond, of length 126 pm) and -C20 terminations (with a purely σ

bond of length equal to 142 pm). C-graphene bonds are examples of intermediate bond order,

with the π bond only partially populated, and as a consequence intermediate bond length.

BL0 is then an indicator of what fraction of π electron the terminating C-ligand bond devotes

to this terminal bond, rather than to the polyyne. This fraction is essentially 0% for -C20

and practically 100% for -CH2 terminations). This quantity, appearing almost independent

from the chain length, is then the main parameter that determines the properties of the

even-n chains.



2.1. STRUCTURAL PROPERTIES 17

(a) Molecular structure

Naph Naph
138 138130 130128

128

126

126123 123

(b) Chemical structure

Figure 2.4: Molecular (a) and chemical structure (b), with bond

lengths in pm, of a 9-atom sp-bonded carbon naphthyl-terminated

chain. The total energy is essentially independent of the rotation of

one naphthyl group relative to the other one around the chain axis.

The naphthyl termination proves a stable structure, with a gain between 5.5 and 7

eV per bond between the carbyne and the naphthyl group. The end groups are almost

completely free to rotate around their axis: for a molecule with one of the naphthalenes

rotated by 90◦ respect to the geometry shown in Fig. 2.2(a), the total energy is only slightly

higher (by ≃ 20 meV, nearing to the resolution of these DFT calculations) than the total

energy computed for the planar molecule. When the naphthyl group is rotated by 180◦ to the

planar configuration, no evidence of variation in total energy is detected. So we can consider

the terminations as essentially free to rotate independently around the carbyne axis.

The situation is different in odd-n carbyne: these molecules, at least at the moment,

to our knowledge, have not yet been synthesized. BL0 are typical of polyynic chain, like

for even chains, but frustration of the single-triple bond alternation reduces drastically the

BLA near the middle of the chain where eventually double bonds occur (the C-C bond

lengths are reported in Table 2.3). The missing bond alternation at the middle of the chain
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C-C Bond Lengths [pm]

Chemical formula BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7 BLA [pm]

Naph2C5 138 125 129 3.9

Naph2C7 138 124 130 127 4.3

Naph2C9 138 124 130 126 128 4.4

Naph2C11 138 123 130 126 128 126 4.4

Naph2C13 139 123 130 125 129 126 128 4.4

Naph2C15 139 123 131 125 129 126 128 127 4.4

Table 2.3: C-C bond lengths of the first half of the chain (the second

half can be reconstructed using symmetry) and BLA both in pm for

the odd-n chains. The bond length between the terminations and

the chain is not influenced by the length of the carbyne; the polyynic

character of the carbyne is marked by the values of BLA and by the

alternation in bonds length. The character becomes more cumulenic

with the increasing of the length of chain.

leads to a BLA with values more characteristic of a cumulenic chain (≃ 4.5 pm) almost

independent of the length of the chain, as shown in Fig. 2.3. Also for the odd-n chains, the

naphthyl groups are almost free to rotate: in fact the total energy of the twisted molecule,

shown in Fig. 2.4(a), is slightly smaller (≃ 10 meV) than that calculated for the planar

molecule. Tables B.1 and B.2 show the comparison of the total energy for planar and

twisted configurazion of both cumulenic and polyynic chains terminated by -H , -H2 and by

a phenyl group.

In the next sections, we will investigate electric, magnetic and vibrational properties

of even-carbyne planar-molecules and odd-carbyne twisted-ones (in which the two naphthyl

groups are rotated by 90◦ each other); in fact, some tests show us no significant dependence

of these physical properties on the orientation of a naphthyl group with respect to the other.

2.2. Magnetic Properties

For each fully relaxed structure, we have carried out LSDA calculations. The magnetic

behavior of odd-n chains is quite different with respect to that of even-n chains. All even-n

chains remain spin-unpolarized in both the planar and the twisted configuration; as remarked

above, from the electronic point of view, one could substitute the two naphthyl ligands with

two hydrogens with little change in the electronic levels, and indeed the C2mH2 polyynes are

not magnetic.
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(a) Rotated geometry of Naph2C7

(b) Planar configuration of Naph2C7

Figure 2.5: Magnetization isosurfaces of Naph2C7 with the two naph-

thalenes rotated by 90◦ each other (Fig. 2.5(a)) and in planar con-

figuration (Fig. 2.5(b)). The positive magnetization are in red, and

the negative component of the magnetization is in green. The total

magnetization equals 2 Bohr magnetons, indicating a S = 1 state.

On the other hand, odd-n chains are spin-polarized, independently of twisting (Fig 2.5);

likewise, the C2m+1H2 molecules are magnetic. In Appendix B, we report the magnetic

properties of even and odd carbynes, planar and twisted, terminated by -H, -H2, by a phenyl

group, and by a phenyl with an extra H atom (protonated phenyl) in order to break the

π conjugation. The magnetization is the result of a different electronic structure between

even and odd chains: in odd-n chains, two extra majority electrons occupy two more π

levels than the minority spin component; this does not occur in even-n chains for which

the same number of levels are occupied for both the spins. The total magnetization per
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Figure 2.6: Energy levels for the Naph2C8 (a) and for the Naph2C7 (b)

molecule. In the Naph2C7, we distinguish between the majority and

minority spin (Sect. 2.2). Fermi energy is taken as reference energy

(dashed).

molecule equals 2 Bohr magnetons, indicating a S = 1 state. Figure 2.5 shows the magnetic

isosurface for the two configurations, planar and twisted, of the Naph2C7 molecule: the red

isosurface marks the positive (majority) magnetization equal to 2.33 Bohr magnetons/a3
0,

the green isosurface the negative (minority) value equal to −0.33 Bohr magnetons/a3
0. In

all configurations of all considered molecules, a positive magnetization is localized on the

odd-atoms of the carbyne, the negative magnetization localizes on the even-atoms.

2.3. Electronic Properties

Figure 2.6 reports the molecular levels of the Naph2C8 molecule around the Fermi

energy. The evolution of the gap between the lowest unoccupied molecular orbital (LUMO)

and the highest occupied molecular orbital (HOMO) is shown in Fig. 2.7: this gap decreases

following the increase of the chain length. As shown in Fig. 2.8(a), the gap, in eV, is wider

for the even-n carbyne and it is equal to ≃ 1.5 eV for the longer chains. In the odd-n chains,

the gap is narrower (≃ 0.5 eV almost independently from the length of the chain). The

gap of the isolated naphthalene (≃ 3.5 eV) is on the extension of the even-n line due to

the stronger overlap between the electron density of the carbyne and of the ligand for the

shorter chain with respect to the longer one (Figs. 2.9 and 2.10). Figure 2.8(b) shows the
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Figure 2.7: HOMO (in solid blue) and LUMO (in dot-dashed red)

energies as a function of the number of atoms that compose the car-

byne.

same gaps of Fig. 2.8(a) in nm instead of eV. The nature of the HOMO-LUMO gap of the

odd-n chains is completely different from the one of the even-n molecules. This gap involves

two states which are orbitally equivalent, but different only relatively to spin. It is clearly

a spin gap based on the LSDA estimation of exchange. Accordingly, the evolution of the

gap amplitude of odd-n chains is significantly different from the even-n ones. The analogous

of the even-n chains gap for the odd-n ones is the optical gap of Fig. 2.8(a) calculated as

the average between the majority spin and the minority spin gaps: the evolution of the gap

amplitude of both even-n and odd-n chains indicates that the nature of these gaps is similar.

For even-n, Figure 2.9 reports the isovalues of the contribution of the electronic density

of a few relevant electronic states around the Fermi energy, similar to Fig. 2.6. The HOMO

(Fig. 2.9(b)) and LUMO (Fig. 2.9(c)) states of the carbyne are located in the plane orthogonal

to the plane of the chain: the occupied π bonds are evident in the HOMO states, while the

unoccupied ones are evident in the LUMO states. The HOMO−1 (Fig. 2.9(a)) and the

LUMO+1 (Fig. 2.9(d)) states are located in the same plane of the terminations and in

correspondence of the triple and single bonds, respectively. The isosurfaces show a non-

zero overlap between the HOMO and LUMO and between the HOMO−1 and LUMO+1

states. Figure 2.10 shows the electronic density of relevant levels around the Fermi energy
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Figure 2.8: Difference in energy 2.8(a) and in wavelength 2.8(b) as

a function of the number of atoms that compose the carbyne for the

even-n chains (in solid blue) and for the odd-n chains (in dashed red).

The optical gap (in dot-dashed green) of the odd-n chains is simi-

lar to the even-n gap. The value of this difference for the isolated

naphthalene is reported in black.

(a) HOMO−1 state (b) HOMO state

(c) LUMO state (d) LUMO+1 state

Figure 2.9: Electron density of 4 orbitals near the Fermi level for

Naph2C8. The isosurface plotted has value of 0.001 a−3
0 .
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(a) HOMO−1 (b) HOMO

(c) LUMO (d) LUMO+1

Figure 2.10: Electron density of 4 orbitals near the Fermi level for

Naph2C4. The isosurface plotted has value of 0.001 a−3
0 .

for Naph2C4: the HOMO (Fig. 2.10(b)) and LUMO (Fig. 2.10(c)) are similar to those of

Naph2C8. The HOMO−1 and LUMO+1 (Figs. 2.10(a) and 2.10(d)) are oriented in the plane

perpendicular to the molecule, the former located in correspondence of the single bond, the

latter of the triple ones. The overlap between the states of the chain and the states of

the ligands is larger for Naph2C4 than for Naph2C8. For longer chains the contribution of

the ligands to the HOMO and LUMO is even smaller. All the molecules with a carbyne

composed of at least 6 carbon atoms show similar patterns for the orbitals as in Fig. 2.9.

For the odd-n chain molecule, we need to consider the HOMO and LUMO for both

the majority and the minority electron spin. The majority HOMO (HOMOM) and the

minority LUMO (LUMOm) are of course essentially the same orbital, with the same shape

(Figs. 2.11(b) and 2.11(c), respectively). These orbitals are localized on the odd-atoms of

the carbyne, those characterized by a positive magnetization, shown in Fig. 2.5. Due to the

twisted configuration of the molecule, the carbyne isosurfaces of the HOMOm and LUMOM

states are alternatively in the same plane of the ligand and in the perpendicular one. They

show a strong overlap among them and also with the electronic states of the terminations.

In contrast the HOMOM and LUMOm have little overlap with the ligands. Each contour
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(a) Minority spin HOMO (HOMOm) (b) Majority spin HOMO (HOMOM )

(c) Minority spin LUMO (LUMOm) (d) Majority spin LUMO (LUMOM )

Figure 2.11: Electron densities of the majority and minority HOMO

and LUMO of the Naph2C7 molecule. The majority HOMO and the

minority LUMO are orbitally essentially equivalent. The isosurface

plotted has value of 0.001 a−3
0 .

plot is the result of the sum of the contributions of two levels split by a gap of less than

30 meV.

2.4. Vibrational Properties

2.4.1. The Even-n Carbynes. Ravagnan et al., in Ref. [14, 25], reported the produc-

tion and characterization of amorphous sp− sp2 carbon films where the dominant sp species

are cumulenes. This is obtained by supersonic cluster beam deposition on a substrate kept

at a temperature of 150 K. By raising the film temperature to 325 K cumulenes undergo

a reorganization inducing the formation of nanometric graphitic islands in the amorphous

sp2 matrix, while the amount of polyynes remained substantially constant in the investi-

gated temperature range. The typical Raman spectrum of the film, thus obtained, shows

two prominent features in the 1200 ÷ 1700 cm−1 and 1900 ÷ 2300 cm−1 spectral regions.

The former region is typical of amorphous sp2 carbon and is related to vibrational modes
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Molecular structure Molecule nickname Raman frequencies IR frequencies

[cm−1] [cm−1]

Naph2C4 2249 2175

Naph2C4 − 90◦ 2256 2175

Naph2C4 − 180◦ 2249 2175

Naph2C6 2119, 2204 2241

Naph2C8 2142, 2209 2086, 2248

Naph2C10 2066, 2107, 2252 2182, 2242

Naph2C12 2057, 2155, 2257 2048, 2209, 2233

Naph2C14 1999, 2024, 2193, 2236 2117, 2168, 2238

Naph2C16 1965, 2104, 2225, 2230 2012, 2142, 2179, 2249

Table 2.4: Wavenumber of Raman and IR carbyne-frequencies calcu-

lated for the Naph2C2m molecules. The most intense Raman and IR

frequencies are in bold.

of sp2-hybridized sites [26]; the latter is associated to stretching modes of linear sp hy-

bridized carbon structures. Traditionally, the two components peaked at 1980 and 2100

cm−1 are attributed generically to cumulenes and polyynes, respectively. The peak inten-

sity at around 2100 cm−1 decreases in intensity when the sample is warmed up, while the

intensity of the sp2 peak around 1500 cm−1 increases in intensity, due to the reorganization

of the sp-hybridized carbons into sp2-hydridized ones. The same characteristic spectrum

was shown in linear carbon chains in the solid phase prepared using the dehydrochloridation
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Figure 2.12: Calculated intensity of Raman (a) and IR (b) frequencies

for the Naph2C16 molecule.

of either polyvinylchloride [27] or chlorinated polyacetylene [28] using organic strong base.

In Ref. [29], Kinoshita et al. presented the synthesis and characterizations of a conjugated

butatriene polymer having dodecyloxy side chains: these molecules show the characteristic

Raman peak at 2035 and 2045 cm−1.

Starting from the relaxed position of Sect. 2.1, we calculate the vibrational modes and

frequencies of the Naph2Cn molecules. According to our calculations, also the Naph2Cn

molecules display a characteristic Raman-active stretching modes in the range 1950 ÷ 2300

cm−1 (Table 2.4), typical of polyynic chain. Figure 2.12 shows the intensities (in arbitrary

units and in logarithmic scale) of all the frequencies computed for Naph2C16: the most

intense Raman and IR frequencies, called Raman−α and main-IR, are almost one order of

magnitude more intense than the most intense other Raman or IR mode.

In Fig. 2.13, we plot the most intense Raman and IR frequencies as a function of the

sp-atoms in the even-n carbyne: the most intense Raman frequency decrease by about 50

cm−1 for each increase of 2 atoms in the carbyne. The frequency of the most intense IR mode

changes much less than the frequency of the Raman−α, but is found in the same frequency

range as the Raman-active modes. A rotation by 90◦ or 180◦ between the two naphthalenes
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Figure 2.13: Wavenumber of the Raman (solid blue) and IR (dashed

red) most intense frequencies, reported in bold in Table 2.4, as a

function of the number of atoms composing the carbynic section of

dinaphthyl-polyynes.

induces a 7 cm−1 shift in the Raman mode of the Naph2C4 − 90◦. All the other frequencies

remain the same regardless of twist.

Figure 2.14 shows the intensities of the vibrational modes plotted as a function of the

sp carbon atoms: either the Raman or the IR most intense mode shows a rapid increase with

the number of atoms in the carbyne. According to the values of the molar concentration,

reported in Table 2.1 as a function of the number of atoms of the carbyne, of the sample

produced by F. Cataldo, using the method described at the beginning of this chapter, a

shorter chain is more concentrate in the experimental solution than a longer one. On the

other hand, our calculations suggest that a longer chain has a Raman−α and a main-IR

mode more intense than the Raman−α and main-IR frequency of a shorter chain.

Both the frequency and the intensity of the Raman−α line show a sort of zig-zag as a

function of the length of the molecule depending on the multiplicity of the number of carbon

atoms: indeed if the number of sp atoms is an integer multiple of 4 the central bond is a

single bond, while it is a triple bond in the other case (Table 2.2). The same oscillation

occurs for the main-IR line.
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Figure 2.14: Intensity (in arbitrary units and in logarithmic scale) of

the Raman (solid blue) and IR (dashed red) most intense frequencies

as a function of the number of the sp atoms.

According to Ref. [30], the most intense Raman mode shows a common displacement

pattern of the C-C stretching of the carbyne: in Fig. 2.15 are shown the patterns of the

two most intense different frequencies for the Raman and IR modes of the Naph2C16. As

shown in Fig. 2.12, the considered frequencies are 1965 and 2224 cm−1 for the Raman modes

and 2141 and 2249 cm−1 for the IR ones. The bars of Fig. 2.15 represent the displacement

of each atom with respect to its equilibrium position. The vibrational patterns displayed

in the panels on the left correspond to the Raman modes, oh the right to the IR ones.

In the Raman−α mode all triple bonds expand and all single bonds shrink in phase and

the maximum displacement is shown for the atoms at the center of the chain and decrease

moving towards the ends of the carbyne. In the IR most intense mode the central bond

suffers from a translation, in the first half of the chain the triple bonds shrink and the single

ones expand and vice versa in the second half. The result is a pattern with two maxima set

at 1/4 and 3/4 of the carbyne. The vibrational patterns of the other modes are somewhat

complicated.
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Figure 2.15: Absolute displacement patterns (arbitrary units) of the

most intense (see Fig. 2.12) C-C stretching vibrational modes obtained

for the Naph2C16 molecule, which vibrate at the indicated frequencies.

The left-hand panels show two Raman modes and the right-hand pan-

els show two IR modes. The bars represent the displacement of each

atom with respect to its equilibrium position.

(a) First and second neighbors subset (b) First neighbors subset

Figure 2.16: Subset (dark/blue) of atoms used in the linear response

calculation for calculate phonon frequencies. Left: the subset includes

the carbyne plus its first and second neighbors. Right: subset com-

posed of the carbyne-atoms plus its first neighbors only.
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Figure 2.17: Comparison of three different calculations of the phonon

frequencies and intensities of Naph2C8. In the carbyne frequency range

(1950− 2300 cm−1), there is no significant change of intensity or shift

in frequency in the calculations based on the two different subset of

atoms with respect to the complete calculation.

All the calculations presented until now included the displacement of all atoms in the

phonon calculation in order to obtain the wavenumbers and the intensities of the vibrational

modes. As we are interested in the polyyne stretching modes only, we could attempt calcu-

lations where we keep a subset of the atoms in the linear response calculation. This method

has the result of reducing the computational time on one side and of losing accuracy on the

other. As we are interested only in the modes of the carbyne, we can choose between two

subset of atoms: in a more conservative one, we compute the dynamical matrix for the atoms

of the carbyne plus its first and second neighbors (Fig. 2.16(a)) and in the other, we use the

atoms of the carbyne plus its first neighbors only (Fig. 2.16(b)). Figure 2.17 shows that both

choices of the subsets reliable valid in order to obtain the wavenumbers and their intensities

for different stretching modes, when compared to those obtained by computing the linear

response for all atoms, at least in the range of frequencies typical of carbyne modes. The

computational time of the phonon modes parallel calculation of the Naph2C8 performed on
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Molecular structure Molecule nickname Raman frequencies IR frequencies

[cm−1] [cm−1]

Naph2C5 2079 1770, 1923

Naph2C7 1782, 2119 1854, 2081

Naph2C9 2061, 2112 1775, 1800, 2148

Naph2C11 1794, 2087, 2139 1726, 2043, 2166

Naph2C13 2022, 2057, 2174 1670, 1796, 2122, 2165

Naph2C15 1796, 2017, 2100, 2182 2003, 2148, 2161

Table 2.5: Wavenumber of Raman and IR carbyne stretching modes

calculated for the Naph2C2n+1 molecules.

a parallel computer with 24 processors (Intel(R) Xeon(R) CPU X5460 @ 3.16 GHz) is about

50 hours for the full calculation including all displacements, 20 hours for the more conserva-

tive subset of Fig. 2.16(a) and 15 hours for the subset of Fig. 2.16(b). This technique will

be used in the following part of this section to compute the vibrational properties of odd-n

chains and also in Sect. 3.6 for the carbyne-graphene composed systems.

2.4.2. The Odd-n Carbynes. As shown in Sect. 2.2, the odd-n carbyne molecules are

magnetic; technically this feature prevents us to compute the Raman tensor which is not

implemented in the Quantum Espresso code for system where metallic occupancies need to

be considered.
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Figure 2.18: Absolute displacement patterns (arbitrary units) of the

IR C-C stretching vibrational modes obtained for Naph2C13 (see Ta-

ble 2.5), which vibrate at the indicated frequencies. The bars represent

the displacement of each atom with respect to its equilibrium position.

The behavior of the calculated Raman and IR frequencies, shown in Table 2.5, is quite

different from that discovered for the even-n chains: the frequencies range between 1750 and

2200 cm−1, with a minimum value about 200 cm−1 lower than the corresponding even-n

carbon chain (i.e. 1900 cm−1), similar to those found by Fan et al. in Ref. [31] for the C2m

and C2m+1 chains.

The absolute displacement patterns of the IR and Raman frequencies of the Naph2C13

are shown in Figs. 2.18 and 2.19, respectively. These patterns are sufficiently different from

those obtained for the even-n chains. This fact prevent us to make a prevision on the most

intense Raman and IR modes without direct calculation.
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Raman C-C stretching vibrational modes obtained for Naph2C13 (see

Table 2.5), which vibrate at the indicated frequencies. The bars rep-

resent the displacement of each atom with respect to its equilibrium

position.





CHAPTER 3

The Graphene Termination

The present chapter deals mainly with the structural, vibrational, and electronic prop-

erties of different sp-bonded carbon chains inserted into a hole defect of a graphene layer.

In Appendix A.2.2, we describe the computational choices made for the simulations of this

chapter.

3.1. A Chain on a Complete Layer

We start off by analyzing the reactivity of a linear (Fig. 3.1(c)) or curved (Fig. 3.1(d))

carbyne interacting with an infinite graphene layer. We analyze the energies as a function

of the distance and position of the carbyne with respect to the graphene surface, which we

initially take as flat. The bonding energy (Ebond) is defined as the difference between the

total energy of the system including the graphene sheet near to the carbyne (Eg+c), and the

(a) Top view (b) Top view

(c) Side view (d) Side view

Figure 3.1: Positions of the superlattice and carbyne atoms. Different

color as a function of the z-coordinate of the position.

35
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Figure 3.2: Bonding energy of a rigid graphene lattice with a rigid

linear (red circles) and a rigid curved (blue squares) C6 carbyne. The

distance (dg−c) is calculated between the graphene sheet and the near-

est atoms in the chain, along the normal vector to the surface. The

black diamond reports the value of Ebond and of dg−c of a fully relaxed

carbyne, 6 atoms long, on a fixed-positions graphene sheet. The green

triangle reports the value of Ebond and of dg−c obtained relaxing the

system in full.

sum of the energies of the separated graphene sheet (Eg) and the carbyne (Ec):

(2) Ebond = Eg+c − (Eg + Ec) .

We perform total energy calculations, at fixed atoms positions: these positions are initialized

starting from the fully relaxed positions calculated separately for the graphene sheet and for

the n = 6 atoms carbyne for the linear chain; for the curved chain configuration, the positions

of the atoms of the carbyne are initialized starting from the fully relaxed positions computed

for a chain on a frozen graphene sheet, as shown in Fig. 3.3. As shown in Fig. 3.2, for

dg−c . 220 pm the graphene and the carbyne repel each other, and Ebond > 0 eV; for

dg−c & 220 pm a weak attraction is observed. This result remains qualitatively the same

for all reciprocal positions of the graphene and the chain, both in the linear and the curved

geometry: the equilibrium distance is near 280 pm. Considering carbynes of the same shape,
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(a) Top view (b) Side view

Figure 3.3: Positions of the superlattice and carbyne atoms. The

carbyne is relaxed on a graphene sheet of fixed positions. Different

color as a function of the z-coordinate of the position.

(a) Top view (b) Side view

Figure 3.4: Positions of the superlattice and carbyne atoms. The

positions of the atoms either of the graphene foil or the chains are

fully relaxed. Different color as a function of the z-coordinate of the

position.

only in the strongly repulsive region (for dg−c < 160 pm), we observe a significant difference

in the value of Ebond for different relative chain-graphene locations.

We also consider the possibility of fully relaxing the C6 carbyne near a frozen graphene

sheet (Fig. 3.3): the values of Ebond and of the distance between the chain and the foil is
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(a) Starting positions (b) Relaxed positions

Figure 3.5: Starting and relaxed positions of the system nanohole-

carbyne: the lateral dimension of the nh is too small and the atoms

of the carbyne (in maroon) interact with the two armchair edges that

reconstruct.

reported in Fig. 3.2. Ebond = −0.7 eV and the overall distance of the chain from the graphene

sheet (nearest atom) is 287 pm.

Figure 3.4 shows the positions of the graphene sheet and of the chains obtained relaxing

the system in full. The reciprocal interaction between the foil and the chain has the effect

of a weak lowering the graphene atoms just under the carbyne. The value of Ebond is lower

of 7 meV with respect to the value computed for the configuration of a carbyne relaxed on a

frozen graphene sheet and the overall distance of the chain from the graphene foil is 285 pm.

3.2. The Nanohole

Starting from the perfect graphene foil of Fig. A.3, we remove some atoms in order to

form a nanohole (nh). Our purpose is to understand how various properties of the system

are influenced by different kinks of carbynes bonded to the edge of this hole. The size of

the nh should be such that inserted carbyne chains fit and only bind at their ends. If we

create a too small nh, then chain carbon atoms would reconstruct the edges of the hole. As

an example of a small nh, Figure 3.5 shows a carbyne (6 atoms long, in maroon) bonded to

the zig-zag edges that, after being fully relaxed, becomes a 2-atoms long chain: in fact, due

to the interaction between the sp-chain and the armchair edges, a few carbyne atoms are

captured by these edges forming extra bonds with the nh. A nh of this shape/dimension is

therefore useless for the purpose of investigating end-binded carbynes in the nh. Also in a nh
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(a) Starting positions (b) Relaxed positions

Figure 3.6: Starting and relaxed positions of the system nanohole-

carbyne in a hexagonal cell: the carbyne is too near to the edges of

the nh that reconstructs.

built in a hexagonal cell (Fig. 3.6), the distances between the carbyne and the nh edges are

too small, with the result that a few atoms of the chain interact with the nh and reconstruct

its edge by forming two additional pentagons.

We must therefore consider a sufficiently big nh: we need a distance of at least 300 pm

between the chain and the edges in order to avoid this sort of reactions. The nh that we

consider optimal for our purposes is shown in Fig. 3.7. Starting from the perfect graphene

of Fig. A.3, the nh is obtained by removing 28 atoms forming a rectangular hole of size

975 pm × 985 pm with edges composed of 3 zig-zags and 2 armchairs. The size of the

nh permits us to insert several carbynes, from 5 to 8 atoms long, and in various positions

relative to the hole. We study most extensively a symmetric configuration with a chain

bonded at the middle of one zig-zag edge to the opposite zig-zag edge, but we consider also

a configuration of carbynes bonded to the armchair edges.
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Figure 3.7: Relaxed positions in the nanohole superlattice: removing

28 atoms from the perfect graphene of Fig. A.3, we obtain a rectan-

gular hole of dimension of 975 pm × 985 pm with edges composed of

3 zig-zags and 2 armchairs.

3.3. A Carbyne Binding to a Nanohole

Our initial purpose is to investigate the properties of a nh in a system composed of

several layers of graphene (like in graphite). This configuration is more realistic with respect

to a single free-standing mono-layer of graphene although in cluster assembled sp − sp2

carbon films one must expect that defective single graphene layers are relatively abundant.

Consider a system of one layer of perfect graphene and a layer with a nh, such as that

described at the end of Sect. 3.2. Figure 3.8 shows this configuration with the insertion of 6

atom long linear chain. This configuration is fully relaxed, relatively to the upper graphene

layer and the carbyne atoms, while the lower layer is kept frozen in ideal graphitic positions.

The distance between the two layers is very close to the typical distance between the layers

of graphite and equals 332 pm.

A system composed of over 200 atoms is computationally very expensive; in fact a

parallel calculation performed of 32 processors took more than two weeks to obtain a fully

relaxed configuration. On the other hand, the properties of this two-layer configuration
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Figure 3.8: System composed of a perfect graphene foil and a nh sheet

stacked in the standard AB arrangement of graphite. A 6-atom long

carbon chain is bonded to the graphene inside the nh. The distance

between the two layers equals 332 pm. The lower sheet atoms are in

pale blue, the upper ones in dark blue.

do not change significantly by considering the same system without the perfect graphene

sheet. Indeed the forces between the two layers are weak long-range forces whose action is

very small with respect to the intra-layer forces. The DFT-LSDA estimation of such weak

dispersion forces is unreliable anyway. These observations convinced us that it makes good

sense to consider a system composed of a single layer, the one containing the nh, plus the C6

carbyne inserted into it. The relaxation of the positions, performed in the same conditions

as above, took about one week only in this simpler configuration involving 90 C atoms in

total.

In our calculations, we consider different chains, from 5 to 8 atoms long, in different

reciprocal positions relative to the hole. Table 3.1 summarizes the structural properties

of the configurations considered with their BLAs and bonding energies. The value of the

BLA is strongly influenced by the length of the carbyne inserted into the hole: a stretched

configuration leads to a enhanced BLA typical of polyynic chain (such as nh-C6 arm, whose
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Name Description BLA Ebond

[pm] [eV]

nh-C5

(Fig. 3.9(a))

C5 chain laying in the same plane of the graphene.

The carbyne is stretched, the first and the last car-

bon of the chain are weakly bonded to the edge of

the nh (bond lengths of 170 pm).

7 4.2

nh-C5 1b

(Fig. 3.9(b))

C5 chain laying in the same plane of the graphene.

The chain is bonded to the nanohole only on one

side; the bond lengths of the carbyne atoms are

similar to those of a cumulenic chain (127 pm).

1 6.2

nh-C6 zig

(Fig. 3.9(c))

C6 chain laying in the same plane of the graphene.

The weakly stretched chain is bonded to the zig-

zag edge.

10 12.9

nh-C6 arm

(Fig. 3.9(d))

C6 chain laying in the same plane of the graphene

and joins opposite armchair edges at an sp2 atom.

This configuration has only two symmetry planes.

12 8.2

nh-C7 curved

(Fig. 3.9(g));

nh-C7 s-curved

(Fig. 3.9(h));

nh-C7 straight

(Fig. 3.9(i))

C7 carbyne squeezed in the nh with various bind-

ing shapes, all joining the two zig-zag edges

(Fig. 3.9(e)): the curved carbyne, in which the

chain is bent out of the graphene plane (the max-

imum height of the chain equals 120 pm); the s-

curved chain, with the atom at the center of the

chain in the same plane of the graphene and the

bending in opposite directions relative to the sheet;

the straight carbyne, in which the chain is com-

pressed into the graphene plane.

3

3

2

12.0

11.9

11.8

nh-C8

(Figs. 3.9(f), 3.9(j))

A C8 curved carbyne. The maximum height of the

chain equals 297 pm.

6 12.5

wnh-2C6

(Fig. 3.10)

Two C6 carbynes inserted in the same plane of a

wider hole (the edges are composed of 5 zig-zag

and 2 armchair structures) and join the zig-zag

edges. The horizontal distance between the chains

equals 491 pm.

11 for

each

chain

N.C.

Table 3.1: Summary of the different configuration considered for the

system carbyne and nh with BLA and total bonding energy Ebond,

corresponding to the formation of the usually two bonds.
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(a) nh-C5 (b) nh-C5 1b

(c) nh-C6 zig (d) nh-C6 arm

(e) nh-C7 straight, top view (f) nh-C8

(g) nh-C7 curved, side view (h) nh-C7 s-curved, side view

(i) nh-C7 straight, side view (j) nh-C8 side view

0.0 0.5 1.0 1.5 nm

Figure 3.9: Configurations of the structures considered in the present

chapter and described in Table 3.1.
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Figure 3.10: Relaxed position of the wider nh with two C6 carbynes:

the hole is wider than those considered in Fig. 3.9 in order to avoid

the recombination of the two carbynes. This configuration displays no

significant novelty relative to the single carbyne nh-C6 zig configura-

tion.

BLA reaches 12 pm), while a chain compression leads to a more cumulenic value (e.g. nh-C7

straight, with its BLA ≃ 2 pm). No significant variation in BLA is shown for a change in the

shape of the carbyne, as shown for nh-C7, for which we perform three calculations for the

different shapes of the carbyne: the curved and the s-curved geometry and the straight one.

For all of them the BLA takes values from 2 to 3 pm. The highly stretched nh-C5 displays

a intermediate polyynic character (BLA ≃ 7 pm) despite its odd-n and bonding between

the chain and the nh is weak (Ebond = 4 eV). This configuration is obtained starting with

the atoms of the chain in symmetric positions with respect to the edges of the hole, but if

at the beginning of the calculation the chain is positioned significantly closer (≃ 50 pm) to

one edge than to the other, we obtain an optimized geometry with only one bond between

the chain and the nh (nh-C5 1b), and with internal bond lengths that are practically equal

those of isolated C5. Eventually this single-bond formation is the most stable configuration,

with a total energy 2 eV lower than the nh-C5 geometry, Fig. 3.9(a), which represents a local

minimum, i.e. a metastable configuration. Due to the small size of the nh, the C8 chains

can only fit in a curved geometry: the maximum out-of-plane elevation of the chain equals

297 pm. The BLA is intermediate between cumulenic and polyynic chains (BLA ≃ 6 pm).
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We also consider a wider nh in which one can insert more than one chain: in wnh-2C6,

the nanohole contains two C6 carbynes at a distance large enough to keep them separated.

The BLA is like the one obtained for the nh-C6.

We evaluate the bonding energy of the configurations described here. Due to its stretch-

ing, the nh-C5 has a little value of Ebond ≃ 4 eV, while for the nh-C5 1b Ebond = 6.6 eV which

can be considered the best estimate of the carbyne-graphene edge binding energy. For all

other configurations Ebond ≃ 12 eV indicative of the formation of two bonds, at the expense

of approximately 1 eV elastic energy

In all systems discussed until now we connect the carbyne to the zig-zag edges. A

different configuration is obtained binding the chain to the armchair edges (nh-C6 arm): in

that case, the BLA takes the value 12 pm, similar to that obtained for the nh-C6 zig, and

associated to a tensile strain. The bonding energy is lower (Ebond ≃ 9 eV), due to the lower

reactivity of the armchair edge relative to the zig-zag one.

The relaxed positions of all structures investigated here are displayed in Figs. 3.9

and 3.10.

3.4. Magnetic Properties

Yu et al. [33], studied the magnetic behavior of a nanohole in a supercell geometry

similar to ours, but using a rhombus supercell. They built rhombus or hexagonal holes with

only zig-zag edges. Zig-zag edges are generally known to be ferrimagnetic [34, 35]. Yu et

al. [33] investigated the relation of the magnetization of two consecutive zig-zag edges and

discovered that the alignment of magnetism is ferromagnetic if the atoms belong to the same

graphene sublattice (which happens when the subsequent zig-zag edges are rotated by 0◦ or

120◦ (like in a triangular hole). In the opposite case, the magnetization is antiferromagnetic,

as happens for zig-zag edges rotated by 60◦ or 180◦ (e.g. rhombus and hexagonal hole). The

angle between two edges is defined as the angle between two in-plane vectors normal to the

edges. The schematic representation of the geometry relationships among graphene edges is

shown in Fig. 3.11.

Our nh is quite different because it involves two armchair edges: magnetism with

localized-spin moments is possible due to the existence of non-bonding localized states at the

zigzag edge, but these states do not occur at the armchair edge [36]. All structures described

in Sect. 3.1, show a nonzero absolute magnetization, localized on the zig-zag edges. Also

the carbyne carries magnetization in the case of odd-chains, while the even-ones are non-

magnetic, as illustrated in Fig. 3.12 for the nh-C5 and nh-C8 structures. The ferromagnetic

state of Fig. 3.12 is induced by the starting magnetization assumed at the beginning of the

self-consistent calculation. Technically, we define two fictitiously different atomic species,

both with the same chemical nature, but the first one with initially null magnetization, and

the second one with a positive initial magnetization. We place these polarized atoms on the
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Figure 3.11: Scheme of the geometric relationship between edges in

graphene. The edge atoms belong to the same sublattice (in red or in

blue) if the zig-zag edges are at an angle of 0◦ or 120◦ to each other,

but different sublattice if at an angle of 60◦ or 180◦. The angle between

edges is defined as the angle between the normal vectors of the edge,

from Ref. [32].

zig-zag edges so that the calculation ends up into a ferromagnetic structure. To investigate

the possibility of antiferromagnetic or ferrimagnetic structure, we consider three fictitiously

different species of carbon, C, CUP, and CDW, with zero, positive, and negative starting

magnetization, respectively. Instructed by the computed value of the magnetization of the

ferromagnetic case, we take a starting atomic magnetization of = 1 Bohr magneton. Fig-

ure 3.13 illustrates a possible arrangement of the “bulk”, the C atoms (in blue), and the

CUP or the CDW atoms (in red and green) placed along the zig-zag edges.

We perform several self-consistent calculations for the nh-C6 structure starting from

the relaxed positions obtained in the ferromagnetic configuration , but considering different

starting magnetizations, as shown in Fig. 3.14. Under each structure, the total and absolute

magnetization, Mtot andMabs, and the total energy (Etot) are reported. In according with the

results of Ref. [33], the ground-state configuration, Fig. 3.14(a), has the same magnetization

sign for atoms belonging to the same sublattice (there labeled B, C, H, E of Fig. 3.13), while
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(a) nh-C5 magnetization (b) nh-C8 magnetization

Figure 3.12: Magnetic isosurfaces for the nh-C5 and the nh-C8 struc-

tures. The value of the isosurfaces equals 0.01 µB/a
3
0. In this config-

uration both systems are ferromagnetic.

the sign changes in passing from one sublattice to the other. The edge atoms bonded with the

carbyne show little or no magnetism, mainly induced by the ferromagnetic interaction with

the other atoms along the zig-zag edge. Low-lying excited states are obtained by changing

appropriately the starting magnetizations of selected atoms.

The Ising model can be used to understand how the changes in magnetization translate

into energy differences. The model proposed by E. Ising [37] is the simplest model to describe

a magnetic structure starting from its elementary constituents; it is defined on a discrete

collection of discrete variables (spins). The spins Si interact in pairs, with energy that

acquires one value when the two spins are the same, and a second value when the two spins

are different. The energy of the Ising model is defined as:

(3) Espin = −
∑

i6=j

JijSiSj ,

where the sum counts each pair only once and J represents the difference in energy between

two different magnetic structures, i.e. the magnetic interaction between two atoms due to

spins. According to the values of the absolute magnetization in Fig. 3.14(a), we can assume

that each atom has a magnetism equal to 1 Bohr magneton (Mabs ≃ 8 for 8 atoms that has

carry a magnetic moment). For this reason, we must not consider those configurations for

which the absolute magnetization happen to be significantly different from 8. It is therefore

appropriate to consider a Ising model where spins can take values 1/2 or −1/2. The product

SiSj is either 1/4 if the two spins are aligned, or −1/4 if they are anti-aligned. For each pair

of atoms, if Jij > 0, the interaction is ferromagnetic that tends to align spins; if Jij < 0,
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Figure 3.13: In order to obtain magnetic structures different from

ferromagnetic one, we consider three fictitious atomic species corre-

sponding to the expected spin polarization: C, CUP, and CDW, with

zero, positive and negative starting magnetization, respectively. In our

system, the C atoms are in blue, the CUP are red and the CDW are

green. The graphs highlight all independent Ising type coupling, Jij ,

allowed by symmetry and used in Eq. (3), including spin interactions

up to first neighbors.

the interaction tends to anti-align the spins (antiferromagnetic interaction). If Jij = 0, the

spins are non-interacting. We shall assume that spin-spin interactions Jij = 0 beyond first

neighbors.

We can distinguish 3 different interaction parameters Jij, illustrated in Fig. 3.13: J1

describes the interactions between spins belonging to atoms of different sublattices (J1 =

JAB = JCD = JEF = JGH) rotated by 60◦; J2 interactions of atoms within the same zig-zag

edge (J2 = JBC = JFG), and J3 interactions across the armchair edge (J3 = JAH = JDE,
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(a) Ground State

Etot = Eg.s. = −13947.721 eV

Mtot = 0.00

Mabs = 9.00

(b) Etot = Eg.s. + 27 meV

Mtot = 0.00

Mabs = 7.74

(c) Etot = Eg.s. + 36 meV

Mtot = 0.48

Mabs = 7.69

(d) Etot = Eg.s. + 36 meV

Mtot = 0.00

Mabs = 7.55

(e) Etot = Eg.s. + 595 meV

Mtot = 7.36

Mabs = 7.82

(f) Etot = Eg.s. + 692 meV

Mtot = 0.00

Mabs = 7.57

(g) Etot = Eg.s. + 699 meV

Mtot = 0.00

Mabs = 7.04

Figure 3.14: Magnetic isosurfaces of several different nh-C6 magnetic

structures. The ground state is shown in (a), while the others con-

figurations are magnetically excited states. The magnetic isosurfaces

are +0.01 µB/a
3
0 (red) and −0.01 µB/a

3
0 (green).
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Parameter Value [meV] Standard deviation [meV]

E0 347 18

J1 −322 19

J2 32 35

J3 11 36

Table 3.2: Summary of the individual parameters of the Ising Model

calculated for the nh-C6 zig configuration.

representing different sublattice rotated by 180◦). The energy of a configuration can be

written as the sum of the spin energy Espin, Eq. (3), plus E0, that represents all other term

interactions constructing the total energy. For the nh-C6 zig structure, we have:

Etot = E0 + Espin = E0 − J1 (SASB + SCSD + SESF + SGSH)

− J2 (SBSC + SFSG)

− J3 (SASH + SDSE) .(4)

We can evaluate the values of Jij making a linear fit of the energies obtained from

Eq. (4). Table 3.2 reports the values of the parameters E0 and Jij : the value of J1 indicates

that the interaction is antiferromagnetic, while J2 and J3 suggest a weakly ferromagnetic

interaction. The value of J1 is one order of magnitude greater than the values of the other Jij.

The sign of J3 disagrees with the prediction of Ref. [33]. As the standard deviation values

suggest, due to both the uncertainties in the DFT-LSDA evaluation of the total energy and

to the extreme simplification of a model assuming a fixed magnetization amplitude at each

site, this method has not sufficient precision to provide a good determination of both J2 and

J3. In practice the accuracies of J2 and J3 are of the same order of magnitude as the value

of the parameters themselves, so that J2 and J3 are compatible with zero. in contrast, the

values E0 and J1 are determined with a sufficient accuracy.

In Fig. 3.15, we compare the energies of the different configurations of Fig. 3.14 ob-

tained by DFT calculation with those obtained using the fitted Ising model. The model

can approximate well the effects of the large interaction (J1), but fails for the fine structure

induced by the weaker interactions (J2 and J3). Indeed the order of a few levels is inverted

passing from DFT to the Ising model. The accuracy bars are the worst prevision of error

obtained by the sum of the single parameter’s error of Table 3.2. Due to the values of E0 and

Jij calculated using the Ising model, the ground state of the Ising model is different from the

one calculated by DFT (and also predicted by Ref. [33]); this indicates that the Ising model

eventually fails in considering interactions of the order of 10 meV, while it is successful for
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Figure 3.15: Comparison of the energy levels of the magnetic struc-

tures of Fig. 3.14 computed using DFT with the values obtained using

the Ising model fitted to the DFT values.

interactions of the order of 100 meV. Basically, due to the error bars, the model distinguishes

only between two sets of high-lying levels (with parallel J1-related spins) and low-lying ones

(with antiferro correlations of J1-related spins).

A similar analysis could also be done for the odd-n carbynes (e.g. nh-C5, in Fig. 3.12(a)).

Odd-n chains are quite different from the even-n ones, because the former are magnetic.

This leads to two consequences: first the number of spin interactions to be considered in

a odd-chain is greater, and second the intensities of the spin are different. This would

make the possibility to employ an Ising model to understand the data of little significance.

Despite these facts, we can search for the magnetic configuration of lower energy. Figure 3.16

shows two different magnetic configuration of the nh-C7 straight structure. The ground state

configuration is shown in Fig. 3.16(a). According to Ref. [33], the interaction between the

chain and the zig-zag edge (that belong to sublattices rotated by 60◦) is antiferromagnetic

and is also predominant over J3-type one. In this odd-n chain case, the interaction between

the sp-atoms is ferromagnetic. This is not surprising since all atoms of the chain have

magnetization of the same sign. The magnetic energy between the first atom of the carbyne

and the nearest atoms of the zig-zag edge is ≈ 70 meV.
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(a) Ground State

Etot = Eg.s. = −14102.230 eV

Mtot = −0.80

Mabs = 8.41

(b) Etot = Eg.s. + 68 meV

Mtot = −0.80

Mabs = 8.68

Figure 3.16: Magnetic isosurfaces for the nh-C7 straight structures.

The value of isosurfaces is equal to +0.01 µB/a
3
0 (red) and −0.01 µB/a

3
0

(green).

The empty nanohole displays a behavior similar to that of the even-n carbyne. The

atoms involved in the spin interaction, along the zig-zag edges are identified in Fig. 3.17.

Like when a even-n chain is present, the atomic magnetization does not change significantly

in absolute value from one atom to another and nears 1 µB. As illustrated in Fig. 3.17, three

different first-neighbor interactions need to be considered: two of them represent interaction

between two edges belonging to different sublattices (where we expect an anti-ferromagnetic

character) and the other describes the interaction between spins of the same sublattice (i.e.

ferromagnetic character, according to Ref. [33]). As done above for the nh-C6 structures,

we make a linear fit of all magnetic configurations obtained (shown in Fig. 3.18), to evaluate

the values of the Jij and of E0. In the Ising model, the total energy is written as:

Etot = E0 + Espin = E0 − J1 (SASB + SDSE + SFSG + SKSL)

− J2 (SBSC + SCSD + SGSH + SHSK)

− J3 (SASL + SESF ) .(5)

The result of the linear fit is reported in Table 3.3. Like in the nh-C6, J1 is one order of

magnitude greater than J2 and J3. Also here J2 and J3 are compatible with zero. The J1 in-

teraction is indeed antiferromagnetic and very similar to the one obtained in the calculations

with the nh-C6 structure.
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Figure 3.17: Identification of the exchange parameters Jij including

interactions up to first neighbors for the unoccupied nh.

Parameter Value [meV] Standard deviation [meV]

E0 307 23

J1 −270 24

J2 −12 21

J3 −30 38

Table 3.3: Summary of the individual parameters of the Ising Model

calculated for the nh configuration.

Figure. 3.19 compares the energy levels computed by DFT and those obtained using

the fitted Ising model: the same considerations done for the nh-C6 case apply here.
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(a) Ground State

Etot = Eg.s. = −13017.519 eV

Mtot = 0.00

Mabs = 11.67

(b) Etot = Eg.s. + 46 meV

Mtot = −2.00

Mabs = 10.77

(c) Etot = Eg.s. + 82 meV

Mtot = −2.00

Mabs = 10.71

(d) Etot = Eg.s. + 337 meV

Mtot = −6.00

Mabs = 10.95

(e) Etot = Eg.s. + 587 meV

Mtot = 10.00

Mabs = 10.79

Figure 3.18: Magnetic isosurfaces for the nanohole structures. The

value of isosurfaces is equal to +0.01 µB/a
3
0 (red) and −0.01 µB/a

3
0

(green).

3.5. Electronic Properties

In order to investigate the electronic properties of the nanohole-carbyne system, we

evaluate the band energies along a path shown in Fig. 3.20(b), starting from Γ, goes in

direction perpendicular to the chain towards X and then back to Γ passing from M ; then

again parallel to the carbyne until Y and finally back to M . We sample the path in k-space

with points at a distance of 1.75 10−13 m−1.
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Figure 3.19: Comparison of the energy levels of the structures of

Fig. 3.18, as computed using DFT, and as obtained based on the Ising

model (Eq. (5)) fitted on the DFT energies of the empty nh.

Figure 3.20(a) shows the band structure for the empty nh superlattice of Fig. 3.7.

We have analyzed the spatial distribution of these band states, thus we can identify their

character as either

(1) States localized on the edge of the hole (HB, magenta stars).

(2) States localized primarily on the bulk-atoms and, due to the reduced dimension of

the system, minimally on the edge-atoms (BHB, green squares).

Example of these states are reported in Figs. 3.21(a) and 3.21(b). HB are very flat and

dispersionless. Liu et al. in Ref. [38], investigating band structures of graphene nanohole,

discovered the opening of a band gaps for nanohole with either armchair or zigzag edges. In

contrast with that work, we do not find any band gap at Fermi energy (ǫF ); in fact, we find

a metallic band crossing ǫF and showing a weakly dispersive pattern approaching the X and

Y points.

Figures 3.22, 3.23, 3.24, and 3.25 report the results of analogous bands calculations for

the relaxed structures of Figs. 3.9 and 3.10: the magenta stars and the green squares have

the same meaning of Fig. 3.20(a). The blue circles indicate states localized mainly on the

carbyne atoms (CB, e.g. Fig. 3.21(c)) and the maroon diamonds states localized both on
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(a) nh (b) k-point path

Figure 3.20: (a): Band structure for the majority spin component of

the relaxed nh superlattice of Fig. 3.7, in the ferromagnetic configu-

ration of Fig. 3.18(e): magenta stars stand for bands which electronic

states are localized on the hole-edge atoms; green squares represent

electronic states localized both in the bulk and the edge atoms. The

reference energy is taken as the Fermi level (dashed red). (b): k-point

path used in the band structures calculation. This path is followed in

all the band-structure calculation of the present section.

the carbyne and on the edge of the hole (CHB, e.g. Fig. 3.21(d)). For all the structures,

the HBs are flat, while the other bands show a visible dispersion in energy. Essentially all

structures display a metallic behavior due to the CBs that cross the Fermi energy; the nh-C5

1b has no CB that crosses the Fermi energy due to the fact that the carbyne is bounded to

one side only, but the composite system remains metallic thanks to a dispersive band of the

graphene. Figures 3.23(a) and 3.23(b) show the band structures of the two spin components

of nh-C6: the deep bands do not display any change neither to the bands for above the Fermi

level. The most relevant difference is the upward shift of the HB near ǫF by about 0.3 eV.

The only structure that show states localized on the carbyne and on the hole edge is

nh-C6 arm. Basically the carbyne, joining the two armchair edges, has insulating character

and divides the nh into two smaller ones. Eventually however, even this system is metallic.
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(a) HB state (b) BHB state

(c) CB state (d) CHB state

Figure 3.21: Examples of electronic states localized mainly on the

edge-atoms (a), on the bulk and only weakly on the edge (b), mainly

on the carbyne (c) and partly on the carbyne and on the edge (d). For

these 4 examples k = 0, and their energy is within ±2 eV of ǫF .

We perform several calculations of the nh-C7 structure considering different shapes

of the carbyne (curved (Fig. 3.9(g)), s-curved (Fig. 3.9(h)), and straight (Fig. 3.9(i))), in

fact the length of the hole is only 95% of the length of the isolated chain and this induces

different stable shapes of the carbyne: all of them show basically identical band structures

(Fig. 3.24(b)), independently from the shape of the chain.

3.6. Vibrational Properties

We perform phonon calculation for some of the relaxed structures of Sect. 3.1. Con-

trasted to previous vibrational calculations, we use the ultrasoft pseudopotentials which
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(a) nh-C5

(b) nh-C5 1b

Figure 3.22: Spin-majority band structures of nh-C5 (Fig. 3.9(a)) and

of nh-C5 1b (Fig. 3.9(b)).
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(a) nh-C6 zig majority spin

(b) nh-C6 zig minority spin

Figure 3.23: Band structures of the majority and minority spin com-

ponent of nh-C6 zig (Fig. 3.9(c)).
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(a) nh-C6 arm

(b) nh-C7

Figure 3.24: Spin-majority band structures of nh-C6 arm (Fig. 3.9(d))

and of nh-C7 (Fig. 3.9(e)).
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(a) nh-C8

(b) nh-2C6

Figure 3.25: Spin-majority band structures of nh-C8 (Fig. 3.9(f)) and

of nh-2C6 (Fig. 3.10).
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Structure name Raman frequencies [cm−1] IR frequencies [cm−1]

nh-C5 1323, 1368 1332

nh-C6 zig 1777, 1878 1939

Table 3.4: Wavenumber of Raman and IR carbyne-frequencies cal-

culated for the nh-Cn structures. The most intense Raman and IR

frequencies are in bold.

reduces the computational time. For this kind of pseudopotentials the calculation of the

Raman tensor is not implemented in adopted code, which means that we could not compute

intensities. We include in the construction of the dynamical matrix only a subset of atoms

composed of the carbyne and its neighbors up to second. This choice is justified by the

results obtained for the Naph2C8, and discussed in Sect 2.4.1. Thanks to the characteristic

displacement pattern of the most intense Raman and IR frequencies (Fig. 2.15), we can iden-

tify them among all the frequencies calculated even without computing the Raman tensor, at

least for the even-n chain. The calculated frequencies are listed in Table 3.4: the wavenum-

bers of the frequencies are significantly lower than the characteristic stretching-frequencies

of carbyne, whose range is between 1950 and 2300 cm−1. In fact, with respect to a molecule

in which the carbyne is free to relax, in a nanohole, the length of the chain is fixed by the

distance between the two edges of the hole. In nh-C5, the length of the chain, including

the bonds between the carbyne and the nanohole, is 15% longer than the isolated chain;

this elongation leads to frequencies much softer than typical carbyne ones. The length of

the chain in nh-C6 zig is only 5% longer than isolated length, and the frequencies are much

closer to the typical frequencies of free carbynes.

Unfortunately, we are not able to obtain the values of the different vibrational modes

for the curved-carbyne, due to convergency difficulties.



CHAPTER 4

Discussion and Conclusions

The present work collects extensive investigation of the interaction of carbyne chains

with sp2 aromatic or graphitic fragments.

We find that the even-n carbynes terminated with naphthyl groups have a polyynic

character, independently from the chain length, with the typical alternation of single/triple

bonds. All the chains are fairly stable and the reciprocal orientation of the two ligands does

not influence significantly the value of the total energy. The odd-n chains, instead, have a

more cumulenic-like character due to frustration of the single/triple bond alternation. The

two ligands could be replaced by hydrogens with only a modification of the carbyne energy

levels. When the chain is inserted in a nanohole (nh) and binds to zig-zag edge, its polyynic

character is somewhat reduced to a value intermediate between cumulenic and polyynic. We

predict stabilization energies near 6 eV per bond between each carbyne end and the sp2

regions.

Odd-n chains exhibit a nonzero magnetization related to a spin triplet state of the π

bonds in the molecular state. Magnetism of odd-n chains carries forward to chains inserted

in the nh. Even-n chains are instead non-magnetic, and in this context only the magnetic

moments of the graphene edge contribute to the magnetism of the nh-C2m.

We compute also the Raman and IR frequencies of even-n chains with special attention

to the optical C≡C stretching modes which are a characteristic signature of carbynes in the

vibrational spectroscopies. The Raman and the IR frequencies have values ranging from 1850

to 2300 cm−1 with intensities that increase with the length of the chain, and the frequency

of the most intense Raman mode which tends to decrease with n.

The carbynes in the nh display a metallic behavior, with at least one band crossing the

Fermi energy.

The possibility of designing graphene-based magnetic nanostructures is particularly

intriguing. The capability of arranging the spins inside a carbon structure in a variety of

ways, will open the way for the construction of spintronic devices [39]. Possible future

applications for the carbynes in interaction with the graphene-type system could be the

construction of microchips with ferromagnetic or antiferromagnetic character that can be

controlled by nanomanipulation and read out by nanocurrents.

Possible future developments of the present work include extension to a more realistic

systems composed by several graphene layers and a nh, and refinement of the magnetic model
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for the edge spins using at least second-order neighbors. We should also consider different

reciprocal orientation of the carbyne with respect to the nh or different type of chains. A

more complete study of the stability, dynamics, configuration charge, etc. of the carbynes

should include the analysis of the phononic dynamics outside the linear-response regime,

for example by means of Car-Parrinello dynamics. On the molecular side we will study the

properties of a carbyne bonded to other sp2-fragment terminations.



APPENDIX A

Theory and Implementation

In this chapter, we give an overview of the theory at the base of density functional

theory (DFT) [40] and of the computational method used in the present work.

A.1. The Density Functional Theory

Density Functional Theory (DFT) is a ground-state theory in which the relevant phys-

ical quantity is the charge density. DFT is highly successful in describing structural and

electronic properties in a vast class of materials, from atoms and molecules to crystals and

complex systems. Due to its computational simplicity, DFT has become a common tool

in first-principles calculations in order to describe properties of molecular and condensed

matter systems.

A.1.1. The Hohenberg-Kohn Theorem. Consider a system of N interacting elec-

trons in an external potential V (r), usually the Coulomb potential of nuclei. If the system

has a non-degenerate ground state, there is only one ground-state charge density ρ (r) that

correspond to a given V (r). In 1964 Hohenberg and Kohn [41] demonstrated that there is

only one external potential V (r) that yields a given ground-state charge density n (r).

(i) First HK Theorem: Given an interaction between electrons Uee, the external

potential Vext (r), and hence the total energy, is a unique functional of the electron density

ρ (r). The electronic density determines all ground-state (GS) properties, like the kinetic

energy T [ρ (r)], the potential energy V [ρ (r)] = Uee [ρ (r)]+Vext [ρ (r)], and the total energy:

(6) E [ρ (r)] = Vext [ρ (r)] + T [ρ (r)] + Uee [ρ (r)] =

∫

ρ (r)Vext (r) dr + FHK [ρ (r)] ,

where FHK [ρ (r)] is a universal functional, called Hohenberg-Kohn functional, which depends

only on the density and which form is not dependent on the particular system considered.

(ii) Second HK Theorem: The GS energy is minimized by the GS charge density.

Accordingly, DFT reduces the N -body problem to the determination of a 3-dimensional

function ρ (r) which minimizes the functional E [ρ (r)]. Unfortunately, the FHK [ρ (r)] part

of the functional is unknown in its exact form.

A.1.2. The Kohn-Sham Equations. In 1965, Kohn and Sham (KS) reformulated

the problem and opened the way to practical applications of DFT. They solve the problem
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by considering a system of interacting electrons mapped on to an auxiliary system of non-

interacting electrons having the same GS charge density ρ (r). The kinetic energy of the

non-interacting system does not differ too much from the kinetic energy of the interacting

system. For a system of non-interacting electrons, the GS charge density is representable as

a sum over one-electron orbitals (the KS orbitals) ψi (r)

(7) ρ (r) = 2
∑

i

|ψi (r)|2 ,

where i runs from 1 to N/2 if we assume double occupancy of all states, and the kinetic

energy is simply given by

(8) Ts [ρ (r)] = − ~
2

2m
2
∑

i

∫

ψ∗
i (r)∇2ψ∗

i (r) dr .

The KS orbitals are the solutions of the Schrödinger equation

(9)

(

− ~
2

2m
∇2 + VKS (r)

)

ψi (r) = ǫiψi (r) ,

where m is the mass of the electron and they obey to the orthonormality constraint:

(10)

∫

ψ∗
i (r)ψj (r) dr = δij .

The existence of a unique potential VKS (r) with ρ (r) as its GS charge density is a

consequence of the HK theorem, which holds independently of the form of the electron-

electron interaction Uee.

The problem of determining VKS (r) for a given ρ (r) is solved by considering the varia-

tional property of the energy (second HK theorem). The functional derivative with respect

to ψ∗
i of the functional

(11) E ′ = E −
∑

ij

λij

(
∫

ψ∗
i (r)ψj (r) dr − δij

)

,

where λij are Lagrange multipliers, must vanish:

(12)
δE ′

δψ∗
i (r)

=
δE ′

δψi (r)
= 0 .

The energy functional can be written as follows:

(13) E = Ts [ρ (r)] + EH [ρ (r)] + Exc [ρ (r)] +

∫

ρ (r)V (r) dr ,

where the first term is the kinetic energy of non-interacting electrons (Eq. (8); the second

term is the so called Hartree energy, that describes the mean-field electrostatic interaction
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between the electronic cloud of charge and itself:

(14) EH [ρ (r)] =
e2

2

∫

ρ (r) ρ (r′)

|r − r′| drdr′ ;

the third term, the exchange-correlation energy, contains all remaining terms, whose precise

form is presently unknown. Taking into account that

(15)
δρ (r)

δψ∗
i (r′)

= ψi (r) δ (r − r′) ,

we can compute the functional derivatives of each term appearing in the energy functional

(Eq. 13), finding:

δTs

δψ∗
i (r)

= − ~
2

2m
2
∑

i

∇2ψi (r) ,(16)

δEH

δψ∗
i (r)

= e2
∫

ρ (r′)

|r − r′|ψi (r) dr
′ ,(17)

and

(18)

(

− ~
2

2m
∇2 + VH (r) + Vxc [ρ (r)] + V (r)

)

ψi (r) =
∑

j

λijψj (r) ,

where

VH (r) = e2
∫

ρ (r′)

|r − r′|dr
′ and(19)

Vxc [ρ (r)] =
δExc

δρ (r)
(20)

are the Hartree and the exchange-correlation potentials, respectively.

After a little math, the KS equations take the form:

(21) (HKS − ǫi)ψi (r) = 0 ,

where λij = δijǫj and the KS Hamiltonian, HKS, is defined as

(22) HKS = − ~
2

2m
∇2 + VH (r) + Vxc (r) + V (r) ≡ − ~

2

2m
∇2 + VKS (r)

and is related to the functional derivative of energy:

(23)
δE

δψ∗
i (r)

= HKSψi (r) .
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A.1.3. The Local Density Approximation. The KS equations are very similar to

the Hartree-Fock (HF) ones. In fact, both are derived from a variational principle: the

minimization of the DFT energy functional for the former, of the average energy for a

single Slater determinant wave-function for the latter. While the HF equations are derived

starting from an approximation (that is taking the total electron wave-function as a Slater

determinant), until now we made no assumption in the KS derivation.

One of the most used approximations for the exchange-correlation potential, introduced

by Kohn and Sham, is the Local Density Approximation (LDA). They approximate the

functional for exchange-correlation energy, Exc [ρ (r)], with a function of the local density

ρ (r):

(24) Exc [ρ (r)] =

∫

ǫxc (ρ (r)) ρ (r) dr ,

with

(25)
δExc

δρ (r)
= µxc (ρ (r)) =

(

ǫxc (ρ) +
dǫxc

dρ

)

ρ=ρ(r)

,

and for ǫxc (ρ) is used the same dependence on the density as for the homogeneous electron

gas (jellium model) for which ρ (r) is constant.

A.1.4. The Local Spin Density Approximation. Up to now the KS equations has

been considered independent of spin. DFT can be extended to calculate GS properties of

spin-polarized system: the electronic density is split into two parts polarized in opposite

way, ρ = ρ↑ + ρ↓, and the energy is a functional of both these components, E = E (ρ↑, ρ↓).

We study collinear system and perturbations with magnetic fields oriented only along the

z-axis, thus we consider only the diagonal terms of the spin-density matrix. In Local Spin

Density Approximation (LSDA), the exchange-correlation potential can be written

(26) V LSDA
xc =

∫

ρ (r) ǫxc [ρ↑ (r) , ρ↓ (r)] dr ,

where ǫxc is the exchange and correlation energy of the homogeneous electron gas at density

(ρ↑, ρ↓). The relative polarization can be defined as:

(27) ζ =
ρ↑ − ρ↓
ρ

;

if ζ = 1, all spins are oriented along the same direction and the system is completely

polarized; if ζ = 0, the spins are equally oriented along up and down directions and the

system is non-magnetic.
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A.1.5. The Plane-Wave Basis Set. The KS equations are solved in a self-consistent

way: starting from an input density, the KS Hamiltonian is generated, and the KS equations

are solved. The cycle stops if the eigen-energies and the eigen-values satisfy some convergence

criteria, otherwise the outputs are considered as inputs for a new cycle, and the procedure is

repeated until convergence is achieved. We need to represent in some way the KS orbitals.

For example, (i) one can represent them on a real space grid or (ii) by expansion on a basis

set. In the latter case, atomic-centered functions (e.g. Gaussian or atomic orbitals) have

been tried, but functions that are independent of the atomic positions (e.g. plane waves, as

we are going to describe here) have a few advantages, in particular that the Hilbert space

span by the basis is independent of the atomic positions.

The plane-wave basis is especially suited in a periodic context, like a crystalline solid.

It is less apt to describe molecules and clusters, but this can be done in a repeated-supercell

geometry, by placing sufficient vacuum around the finite object. Thanks to Bloch’s theorem,

independent electron states in a periodic system can be written as the product of a periodic

function times a plane wave:

(28) ψk (r) = eik·ruk (r) ,

where uk (r + R) = uk (r), if R is a direct lattice vector. Since every eiG·r has the lattice

periodicity (G is a reciprocal lattice vector), the vector k in the reciprocal space can be

defined modulus the closest G vector, and it can be confined to the first Brillouin zone of

the system. The KS equation for a given electronic state j are:

(29) ĤKSψk (r) =

[

− ~
2

2m
∇2 + VKS (r)

]

eik·ruk (r) = ǫKe
ik·ruk (r) .

For every k, there is a complete set of functions uk; the dependence of ǫK on k defines the

electron bands of the system. We can expand the functions uk on a plane waves basis set

φk:

φk =
1√
Ω
eiG·r , 〈φG|φG′〉 = δGG′(30)

ψk (r) =
eik·r

√
Ω

∑

G

ck,Ge
iG·r ,(31)

where the ck,G are the plane-wave coefficients. The kinetic energy and the potential can be

written:

T k

G,G′ = − ~
2

2m
〈φG|φG′〉 =

~
2

2m
|k + G| δGG′ and(32)

〈φG|VKS (r) |φG′〉 =
1

Ω

∫

VKS (r) ei(G−G′)·rdr = ṼKS (G −G′) ,(33)
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where ṼKS (G −G′) is the Fourier transform of the potential VKS (r). The KS equations

reduce to the eigen-value problem:

(34)
∑

G′

[

~
2

2m
|k + G| δGG′ + ṼKS (G − G′)

]

cnk,Gprime = ǫnkcnk ,

where n is the band index. In the calculations, the sum over G has to be truncated up to a

given cutoff:

(35)
~

2

2m
|k + G|2 ≤ Ecut ,

where Ecut is the kinetic-energy cutoff.

A.1.6. The Pseudopotentials. The pseudopotentials (PPs) is an effective potential

constructed to replace the singular atomic all-electron potential. Core states do not con-

tribute in a significant manner to chemical bonding and to solid-state properties. Only

outer (valence) electrons do, while core electron are frozen in their atomic state. For many

purposes one can safely ignore changes in core states (frozen core approximation). PPs

have been widely used in solid state physics starting from the 1960s. Modern PPs are called

norm-conserving. These are atomic potentials which are devised so as to mimic the scattering

properties of the true atom. For a given reference atomic configuration, a norm-conserving

PP must fulfill the following condition: (i) all-electron and pseudo-wavefunctions must have

the same energy; (ii) they must be the same beyond a given core radius rc, which is usually

located around the outermost maximum of the atomic wave function; (iii) the pseudo-charge

and the true charge contained in the region r < rc must be the same. Norm-conserving PPs

are relatively smooth functions, whose long-range tail goes like Zve
2/r where Zv is the num-

ber of valence electrons. They are nonlocal because it is usually impossible to mimic the

effect of orthogonalization to core states on different angular momenta l with a single func-

tion. PPs are equivalent to the frozen core approximation: PP and all-electron calculations

on the same systems yield almost indistinguishable results (except for those cases in which

core states are not sufficiently frozen).

A.1.7. The Success and Failures of DFT. DFT-LDA is computationally much sim-

pler than HF. The best results are obtained for solids, whose structural and vibrational

properties are well described [42, 43]: the correct crystal structure is usually found to have

the lower energy; bond length, phonon frequencies are accurate within a few percent. The

accuracy of LDA is considered satisfactory in condensed-matter system, but it is much less so

in atomic and molecular physics (highly inhomogeneous systems for which an approximation

based on the homogeneous electron gas would hardly be appropriate) LDA overestimates (up

to ≈ 20% and more) cohesive energies and bond strengths in molecule and solids, and as a

consequence bond lengths are often underestimated [44, 45]. These problems are sometimes
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corrected by the introduction of gradient approximations [46]: the exchange-correlation func-

tional is written as a function of the local density and of the local gradient of the density.

This is the simplest extension of LDA to inhomogeneous systems. Generalized Gradient

Approximations (GGA) functionals yield much better atomic energies and binding energies

than LDA, at a modest computational cost; in particular they yield a good description of

the Hydrogen bond.

Since the LDA has functionals based on the local density and on its local derivative, the

weak Van der Waals (VdW) interactions are absent by construction, due to their non-local

character. VdW-bonded systems can be better studied with classical molecular dynam-

ics and interatomic potentials. To solve this problem, there are two kinds of approaches:

adding semi-empirical VdW interactions, or using a nonlocal exchange-correlation functional

accounting for VdW interactions [47, 48]. The former is computationally much heavier, but

it may become soon a viable option.

Simple DFT approximations often fail in strongly correlated materials, whose contain

localized, atomic-like electron states, typically originating from d or f atomic states, together

with delocalized, band-like states originating from s and p orbitals: LDA and GGA may

produce an incorrect occupancy of the localized states (less localized), leading to an incorrect

description of the properties of the material under study. The solutions can be to add a

Coulomb repulsion term, U , responsible for the behavior of highly correlated materials, to a

DFT-LDA calculation (LDA+U) [49] or the use of hybrid functionals, containing a mixture

of HF exchange. The former approach is computationally cheap but not rigorous, the latter

is expensive in solids.

Some errors in simple DFT comes from self-interaction (the interaction of an electron

with the field it generates) [50, 51]. Self-interaction cancels by construction in HF; in DFT,

self-interaction affects finite systems, or systems containing localized electrons, while its

effects vanishes for delocalized electron states in solids.

Due to the failure of KS band gaps (energies difference between HOMO and LUMO

states) to reproduce carefully the true band gap in solids, gaps in DFT are significantly

underestimate (up to 50%) [52]. In finite systems ionization potentials and electron affinities

can be calculated as energy difference between the ground state and a state with one electron

added or removed; in extended systems this is not possible. The reason for this problem lies

in the dependence of the exact energy functional upon the number of electrons and in the

inability of approximate functionals to reproduce it.

A.2. The Application DFT in the Present Work

To study our carbon compounds, we use the QUANTUM ESPRESSO package [53], in

particular to compute relaxed structures, band structures or molecular levels, and vibrational

properties. To depict the optimized atomic structures we use the XCRYSDEN package [54].
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A.2.1. The Naphthyl Termination. In this Section, we describe the computational

method used for study the properties of the naphthyl group bonded to a carbyne. We

compute relaxed geometries, using the adiabatic potential based on ultrasoft pseudopo-

tentials (RRKJUSpp, C.pz-rrkjus.UPF and H.pz-rrkjus.UPF for carbon and hydrogen, re-

spectively [53]), for which a relatively low cutoff for the wave function/charge density of

30/240 Ry is sufficient. We also use numerically more expensive norm-conserving pseudopo-

tentials (VBCpp, C.pz-vbc.UPF and H.pz-vbc.UPF [53], with a wave function/charge cutoff

of 60/240 Ry) to compute the matrix of Raman coefficients, using second order response [55]

from phonons [56, 57], because the Quantum Espresso implementation for ultrasoft pseu-

dopotentials is still missing.

For all these isolated-molecule calculations, we consider a single k-point placed at Γ.

We relax all atomic positions until the forces and energy difference drop below 10−4 Ry/a0

and 10−5 Ry, respectively; the self-consistent cycle used to compute the electronic structure

stops after the total adiabatic energy is converged to better than 10−9 Ry. To prevent

convergence problems for the molecular geometries where the HOMO-LUMO gap becomes

small or vanishes, we occupy the molecular orbitals (MO) using a Gaussian smearing of the

occupancies of 3 meV, which is completely irrelevant in the common situation of a molecular

gap exceeding 0.1 eV. Periodic boundary conditions are implied in a plane-waves geometry.

Accordingly, we study isolated molecule in a repeated-cell geometry, making sure that at least

1 nm of vacuum separate periodic images in each direction, in order to make the reciprocal

interaction between the periodic images negligible. Numerical details are similar to those

validated and used, e.g., in Ref. [21].

According to the general rule of leaving 1 nm of vacuum around the molecule, we

consider different sizes of the cell containing the molecule. The cell size has no effect on

structural and electronic properties, but it could influence the determination of the frequen-

cies of vibrational modes and their intensity. To solve this question, we consider a simpler

molecule, such as C2H4, Fig. A.1. We consider three different sizes of the box, with increasing

vacuum space between the molecule and its periodic image from 1 nm to 2 nm. Figure A.2

shows the wavenumbers and the related intensities for both the Raman and the Infrared

(IR) frequency of C2H4: no evidence of significant shift of frequency or modification in its

intensity is seen while changing the size of the supercell. These results permit us to compare

the vibrational frequencies and intensities of the dinaphthyl-polyyne molecules (Sect. 2.4) of

different length, thus simulated in supercells of different size using the 1 nm rule as the only

recipe for the choice of the all size.

A.2.2. The Graphene Termination. All DFT-LDA calculations, presented in Chap. 3,

use an energy cutoff of 240 Ry for charge density and potential and of 30 Ry for wave-

functions and a 5×5×1 Γ-centered k-point mesh to span the electron bands in the graphene
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Figure A.1: Repeated-cell geometry, illustrated for calculations of

molecule of C2H4.

plane. BZ integrations in these metallic systems are performed using a 2·10−4 Ry wide Gauss-

ian smearing of the occupations. We relax all atomic positions until the residual-forces drop

below 10−4 Ry/a0. Each self-consistent electronic-structure calculation stops when the total

energy changes by less than 10−8 Ry. We perform all the calculations using the adiabatic

potential based on ultrasoft pseudopotentials (RRKJUSpp). Periodic boundary conditions

are implemented in all directions in the Quantum Espresso package: like for the molecules

the slab supercell considered has 1 nm of vacuum along the z-axis in order to ensure that the

interaction between periodic images of the graphene sheet is negligible. A complete graphene

plane supercell consist of 7 × 4 rectangular conventional unit cells of four carbon atoms, as

shown in Fig. A.3. In total each complete graphene layer within one supercell consist of 112

atoms. We have selected this cell size as a fair compromise insuring fairly small interaction

between the copies of the nanohole in the supercell repetitions, with reasonable computer

time.
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Figure A.2: Calculated intensity of Raman and IR frequencies for

the C2H4 molecule. The intensities are calculated for different sizes of

supercell; a, b, and c are the lengths of each side of the supercell as

shown in Fig. A.1.
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Figure A.3: The adopted slab supercell of graphene composed of 7×4

rectangular unit cells of four atoms corresponding to 56 2-atom prim-

itive cells of graphene. In solid orange the unit vectors of the rectan-

gular unit cell: a = 244 pm and b = 422 pm. The size of the supercell

(highlighted in solid red) in the x − y plane is 1714 pm × 1690 pm.

One primitive cell is in grey.





APPENDIX B

The Magnetization of Carbynes with Other Terminations

The simples termination for a carbyne is hydrogen. The BLA for C6H2 is equal to

12 pm, typical of polyynic carbyne with complete single/triple bonds alternation. The C7H2

(a) C6H2: HOMO (b) C6H2: LUMO

(c) C6H4 − planar: HOMO (d) C6H4 − planar: LUMO

(e) C6H4 − 90◦: Majority spin HOMO (f) C6H4 − 90◦: Minority spin LUMO

Figure B.1: HOMO and LUMO for the n = 6 polyynic (a,b) and

cumulenic (c− f) chains in the contexts listed in Table B.1.
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Structure Name ETot MTot MAbs Magn. structure

[eV] [µB] [µB]

C6H2 0.0 0.0 0.00 —–

C7H2 0.0 2.0 2.57

C6H4

planar
0.0 0.0 0.00 —–

C6H4

90◦
1.2 2.0 2.04

C7H4

90◦
0.0 0.0 0.00 —–

C7H4

planar
1.1 2.0 2.04

Table B.1: Structure and magnetic properties of carbynes terminated

with H and H2. The total magnetization is the integral of the magneti-

zation in the cell: Mtot =

∫

(n↑ − n↓) d
3r; the absolute magnetization

is the integral of the absolute value of the magnetization in the cell:

Mabs =

∫

|n↑ − n↓| d3r. The odd-n polyynic chain (e.g. C7H2), the

even-n cumulenic twisted (e.g. C6H4 − 90◦) and the odd-n cumulenic

planar carbynes (C7H4 − planar) are S = 1 magnetic, while the other

cases are not. For those geometries which are unstable saddle points,

we report the excess total energy.
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(a) C7H2: Majority spin HOMO (b) C7H2: Minority spin LUMO

(c) C7H4 − 90◦: HOMO (d) C7H4 − 90◦: LUMO

(e) C7H4 − planar: Majority spin HOMO (f) C7H4 − planar: Minority spin LUMO

Figure B.2: HOMO and LUMO for a odd-n chain in the context

listed in Table B.1. These states are all twofold degenerate or quasi-

degenerate.

molecule has a BLA more characteristic of cumulenic-like chain (equals 6 pm): the bonds

at the middle of the chain are double leaving two electrons free to move in a degenerate

π orbital delocalized along the chain; according to Table B.1, the positive magnetization

is localized mainly around the odd-index atoms, while we find a weak negative magnetism

around the even-position atoms. The majority-spin HOMO and the minority-spin LUMO of

C7H2 (Figs. B.2(a) and B.2(b)) are equal and the isovalues correspond to the place where the

magnetization concentrates. The HOMO and LUMO of non-magnetic C6H2 (Figs. B.1(a)

and B.1(b)) are placed on the triple and on the single bonds, respectively.

Consider, for comparison, a termination composed of two hydrogens: these chains have

cumulenic behavior (BLA ≤ 4 pm). In the even-n chains, when the equilibrium terminations
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are co-planar, the HOMO electronic levels are in the same plane of the molecule in corre-

spondence of triple bonds (Fig. B.1(c)), while the LUMO ones are in the orthogonal plane in

correspondence of single bonds (Fig. B.1(d)); the number of levels occupied is the same for

both spin components, and this leads to the non magnetic character of the molecule. The

same molecule, but 90◦ twisted, has an energy greater of about 1.2 eV with respect to the

ground-state (GS) planar configuration [21]. The spin components levels disaligned and the

spin majority HOMO is orbitally essentially the same wavefunctions the minority LUMO.

The charge density of these levels localizes near the atoms of the chain in alternating planes

perpendicular to the chain direction (like the magnetization shown in Table B.1). The odd-n

chain relaxes in the twisted configuration (the total energy difference between the twisted

and planar configurations equals 1.1 eV): the electronic levels are in alternating planes per-

pendicular to the chain direction either in the twisted configuration (that is non-magnetic,

Figs. B.2(c) and B.2(d)) or in the planar one (that is magnetic, Figs. B.2(e) and B.2(f)).

The GS has the levels of both spin components occupied in the same way, while we find two

degenerate or quasi-degenerate extra orbitals occupied only by the majority-spin components

in the planar configuration which is then an S = 1 state.

We consider also even-n and odd-n carbynes terminated by a phenyl group (Ph) and by

a protonated phenyl in order to break the aromatic ring (PPh). According to Sect. 2.1, the

nature of a carbyne (cumulene or polyyne) depends on the bond order and length between the

carbyne and the termination (BL0). For the diphenyl-carbynes, BL0 equals 139 pm, typical

of a single bond: the carbyne shows a polyynic behavior. The chain has properties close to

those of the hydrogen terminated chain (Table B.1): the even-n chain is non-magnetic, while

the odd-n chain is magnetic independently of the reciprocal orientation of the two phenyl

groups.

We conclude that a fully aromatic group behaves essentially as a H, and only forms

a single bond to the carbyne. To check this we break the aromaticity of the phenyl circle

by adding an extra hydrogen on the third carbon: the carbyne now shows a cumulenic

behavior and acts as if the terminations had been replaced by two hydrogens at each end

of the chain. Double bonds form. Thus, as shown in Table B.1, an even-planar molecule is

non-magnetic, as well as an odd-torched ones; an even-twisted molecule and an odd-planar

ones are magnetic.
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Structure Name ETot MTot MAbs Magn. structure

[eV] [µB] [µB]

C4 Ph

planar
0.0 0.0 0.00 —–

C4 Ph

90◦
0.01 0.0 0.00 —–

C7 Ph

90◦
0.0 2.0 2.64

C7 Ph

planar
0.006 2.0 2.62

C4 PPh

planar
0.0 0.0 0.00 —–

C4 PPh

90◦
0.8 2.0 2.27

C7 PPh

90◦
0.0 0.0 0.00 —–

C7 PPh

planar
0.6 0.0 2.70

Table B.2: Structure and magnetic properties of carbynes terminated

by a phenyl group (Ph) and by a protonated phenylic group (PPh). All

magnetic configurations are spin triplets. For those geometries which

are unstable saddle points we report the excess total energy. Due to

the aromatic properties of the termination, the diphenyl-carbyne, like

the dinaphthyl-carbyne, is a polyyne and its properties are similar to

those of the H-terminated carbyne. Adding an hydrogen to the phenyl

ring, the aromaticity breaks and the termination acts more like an H2.
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Grazie a Olga, perchè aspetta sempre il tempo che ho da dedicarle.


	Chapter 1. Introduction
	1.1. Polyyne vs Cumulene
	1.2. Different Terminations

	Chapter 2. The Naphthyl Termination
	2.1. Structural Properties
	2.2. Magnetic Properties
	2.3. Electronic Properties
	2.4. Vibrational Properties
	2.4.1. The Even-n Carbynes
	2.4.2. The Odd-n Carbynes


	Chapter 3. The Graphene Termination
	3.1. A Chain on a Complete Layer
	3.2. The Nanohole
	3.3. A Carbyne Binding to a Nanohole
	3.4. Magnetic Properties
	3.5. Electronic Properties
	3.6. Vibrational Properties

	Chapter 4. Discussion and Conclusions
	Appendix A. Theory and Implementation
	A.1. The Density Functional Theory
	A.1.1. The Hohenberg-Kohn Theorem
	A.1.2. The Kohn-Sham Equations
	A.1.3. The Local Density Approximation
	A.1.4. The Local Spin Density Approximation
	A.1.5. The Plane-Wave Basis Set
	A.1.6. The Pseudopotentials
	A.1.7. The Success and Failures of DFT

	A.2. The Application DFT in the Present Work
	A.2.1. The Naphthyl Termination
	A.2.2. The Graphene Termination


	Appendix B. The Magnetization of Carbynes with Other Terminations
	Bibliography
	Ringraziamenti

